期刊文献+

基于人工神经网络的光谱反射率重建 被引量:2

Reconstruction of Spectral Reflectance Based on Artificial Neural Networks
下载PDF
导出
摘要 目的研究基于BP神经网络法和FNN神经网络法重构图像光谱反射率的精度。方法以SG标准色卡作为训练样本,分别使用BP和FNN神经网络法,对测试样本DC标准色卡的光谱反射率进行预测,并利用CIEL*a*b*色差公式、均方根误差(ERMS)和光谱匹配精度(GFC)对结果进行评价。结果 BP和FNN神经网络重构的光谱反射率平均色差(ΔEab)分别为2.997和3.071,平均均方根误差(ERMS)分别为0.056和0.049,平均光谱匹配精度(GFC)分别为0.987和0.991。结论 2种神经网络方法重构的光谱反射率具有相当优越的色度和光谱精度。相比于FNN神经网络,BP神经网络更加适合于光谱图像的获取领域。 The aim of this work was to study the accuracy of the image spectral reflectance reconstructed based on BP neural network and FNN neural network. SG standard color card was taken as the training sample to predict the spectral reflectance of DC standard color card using BP neural network and FNN neural network, respectively, and then the results were evaluated and analyzed with CIE L*a*b*color difference, error root mean square and Goodness-Fitting Coefficient. The average color difference, average error root mean and average Goodness-Fitting Coefficient of reflectance reconstructed with BP neural network were 2.997, 0.056, and 0.981, respectively, while those reconstructed with FNN neural network were 3.071, 0.049, and 0.991, respectively. The spectral reflectance reconstructed by both neural networks had good color and spectral accuracy. Compared to the FNN neural network, BP neural network was more suitable for the field of spectral image acquisition.
作者 付婉莹 刘东
出处 《包装工程》 CAS CSCD 北大核心 2015年第7期103-107,共5页 Packaging Engineering
关键词 BP神经网络 FNN神经网络 光谱反射率 精度 BP neural network FNN neural network spectral reflectance reconstruction accuracy
  • 相关文献

参考文献7

二级参考文献64

共引文献35

同被引文献22

  • 1LIANG H. Advances in Multispectral and Hyperspectral Im- aging for Archaeology and Art Conservation[J]. Applied Phys- ics A, 2012,106(2) : 309-323.
  • 2SHRESTHA R, HARDEBERG J Y. Muhispectral Imaging Us- ing LED Illumination and an RGB Camera[C]//Color and Im- aging Conference, Society for Imaging Science and Technolo- gy,2013(1) :8-13.
  • 3LIU Q, WAN X, XIE D. Optimization of Spectral Printer Mod- eling Based on a Modified Cellular Yule-Nielsen Spectral Neugebauer Model[J]. JOSA A, 2014,31 (6) : 1284-1294.
  • 4WANG X, THOMAS J B, HARDEBERG J Y, et al. Muhispec- tral Imaging: Narrow or Wide Band Filters[J]. JAIC-Journal of the International Colour Association, 2014, 12 : 44-51.
  • 5SHRESTHA R, PILLAY R, GEORGE S, et al. Quality Evalu- ation in Spectral Imaging - quality Factors and Metrics[J]. JA- IC-Journal of the International Colour Association, 2014, 12: 22-35.
  • 6HARDEBERG J. Acquisition and Reproduction of Color Im- ages: Colorimetric and Muhispectral Approaches[M]. Paris: Universal-Publishers, 2001.
  • 7MOHAMMADI M, NEZAMABADI M, BERNS R S, et al. Spectral Imaging Target Development Based on Hierarchical Cluster Analysis[J]. Color and Imaging Conference, Society for Imaging Science and Technology, 2004( 1 ) : 59-64.
  • 8CHEUNG V, WESTLAND S. Methods for Optimal Color Se- lection[J]. Journal of Imaging Science and Technology, 2006, 50(5) :481-488.
  • 9SHEN H L,ZHANG H G, XIN J H, et al. Optimal Selection of Representative Colors for Spectral Reflectance Reconstruction in a Multispectral Imaging System[J]. Applied Optics, 2008,47 (13) : 2494-2502.
  • 10MOROVIC J, LUO M R. Calculating Medium and Image Gam- ut Boundaries for Gamut Mapping[J]. Color Research and Ap- plication, 2000,25 (6) : 394-401.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部