期刊文献+

槽式太阳能聚光集热器传热特性分析 被引量:31

Analysis of heat transfer characteristics for parabolic trough solar collector
下载PDF
导出
摘要 为了研究槽式太阳能集热器的传热特性及为槽式太阳能集热器的设计提供理论依据,该文分析了槽式太阳能集热器的传热特点,建立了槽式太阳能集热器传热过程一维数学模型:利用该数学模型,计算分析了槽式太阳能集热器的传热特性。选取了2014年9月21日、10月25日的太阳直接辐照数据进行计算分析,10月25日太阳直接辐照数据均值比9月21日高37.5894 W/m^2,9月21日集热器吸收的太阳辐射热能计算均值比10月25日高196.644.W/m:接受管内外壁导热量随内外壁面温差升高而增加,接受管外径与内径的比值大于1.05时导热热阻增加到0.0004679 K/(W·m);接受管和玻璃管之问传热主要是辐射换热,辐射换热量随玻璃管内壁面温度升高而增加:对流换热量数值上可以忽略不计,且与接受管和玻璃管之间的环形空间残存气体类型有关,环形空间为氢气的对流换热量大于空气,空气大于氩气:玻璃管对外界的传热主要是辐射换热和对流换热,环境温度每下降lO℃,玻璃管对环境的辐射放热量增加约105 W/m:玻璃外管壁温度为50℃时,风速为6 m/s比0.5 m/s时的对流换热量增加约116W/m,玻璃外管壁温为80℃时,该值增加约为340 W/m;集热器的瞬时热效率随传热工质温度的升高而下降,随太阳直接辐照增加而升高;利用该文建立的数学模型计算的瞬时效率与美国可再生能源实验室的试验数据最大偏差约为3%。 Parabolic trough solar collector (PTC) is one of the most mature technologies in the medium and high temperature solar thermal utilization field, and PTC is the key component which transforms solar radiation into heat. PTC performance directly affects the performance of solar energy heat utilization system. In order to improve the thermal efficiency and provide the theoretical basis for PTC design, this paper analyzes the heat transfer characteristics of PTC. One-dimensional heat transfer mathematical model of PTC is established, and using this model, heat transfer characteristics for PTR70 2008 type PTC are analyzed. The result shows solar radiation heat absorbed by PTC is significantly affected by the solar incident angle. Heat absorbed by PTC is calculated by direct normal irradiance data in September 21st and October 25th, and the mean direct solar radiation data of October 25th is higher than the data in September 21st by 37.5894 W/m2, solar radiation heat absorbed by PTC in September 21st is higher than the data in October 25th by 196.644 W/re. The heat transferred from the outer absorber surface to the inner absorber surface increases with the increase of temperature difference of the outer and inner absorber surface, decreases with the increase of the ratio of outer absorber diameter to inner absorber diameter. When the ratio of outer absorber diameter to inner absorber diameter is grcater than 1.05, the thermal resistance increases to 0.00046-0.00047 K/(W'm). Convection and radiation heat transfer occur between the absorber and the glass envelope. The heat transferred across the evacuated annulus from the outer absorber surface to the inner glass surface through radiation increases with the increase of the temperature of the outer absorber surface. The convection heat transfer between the absorber and glass envelope is very small and plays a negligible role. The heat is associated with annulus gas type, and heat transfer of annulus hydrogen is greater than annulus air and heat transfer of annulus air is greater than annulus argon. The heat transfers from the glass envelope to the atmosphere by convection and radiation. The convection will either be forced or natural, depending on whether there is wind. Radiation heat loss occurs due to the temperature difference between the glass envelope and the sky. Radiation heat loss increases by 105 W when ambient temperature drops by 10℃. The convection heat increases by 116 W when wind speed increases from 0.5 to 6 m/s under the glass envelope outer surface temperature of 50℃. The value reaches 340 W when the glass envelope outer surface temperature is 80℃. The transient thermal efficiency of PTC is significantly affected by heat transfer fluid (HTF) temperature. The transient thermal efficiency decreases with the increase of the temperature of HTF, and increases with the increase of the direct solar radiation. PTC thermal efficiency is calculated by using the mathematical model established in this paper, and compared with the experimental data of the national renewable energy laboratory (NREL) in America, and the results show that the maximum deviation is about 3%. It shows that the mathematical model can reflect the heat transfer law of PTC. The characteristics of heat transfer mathematical model can provide theoretical basis for PTC design and system operation.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2015年第7期185-192,共8页 Transactions of the Chinese Society of Agricultural Engineering
基金 江苏省科技支撑计划(BE2012015,BE2013121) 江苏省高校自然科学研究项目资助(14KJD470003)
关键词 传热 太阳能设备 太阳辐射 槽式太阳能聚光集热器 瞬时热效率 数学模型 heat transfer solar equipments solar radiation parabolic trough solar collector transient thermal efficiency mathematical model
  • 相关文献

参考文献27

  • 1Fernandez-Garcia A, Zarza E, Valenzuela L, et al. Parabolic-trough solar collectors and their applications[J]. Renewable and Sustainable Energy Reviews, 2010, 14(7): 1695-1721.
  • 2Gong Guangjie, Huang Xinyan, Wang Jun, et al. An optimized model and test of the China\'s first high temperature parabolic trough solar receiver[J]. Solar Energy, 2010, 84(12): 2230-2245.
  • 3Zarza E, Rojas M E, González L, et al. INDITEP: The first pre-commercial DSG solar power plant[J]. Solar Energy, 2006, 80(10): 1270-1276.
  • 4Bennamoun L, Belhamri A. Design and simulation of a solar dryer for agriculture products[J]. Journal of Food Engineering, 2003, 59(2): 259-266.
  • 5Ekechukwu O V, Norton B. Review of solar-energy drying systems II: An overview of solar drying technology[J]. Energy Conversion and Management, 1999, 40(6): 615-655.
  • 6张锋伟,戴飞,张克平,赵武云,王芬娥,冯永忠,韩正晟.基于两级干燥工艺的玉米果穗太阳能集热通风干燥系统设计[J].农业工程学报,2010,26(8):338-342. 被引量:20
  • 7Mohamed A M I, El-Minshawy N A. Theoretical investigation of solar humidification-dehumidification desalination system using parabolic trough concentrators[J]. Energy Conversion and Management, 2011, 52(10): 3112-3119.
  • 8Abdel-Rehim Z S, Lasheen A. Experimental and theoretical study of a solar desalination system located in Cairo, Egypt[J]. Desalination, 2007, 217(1): 52-64.
  • 9Patnode Angela M. Simulation and Performance Evaluation of Parabolic Trough Solar Power Plants[D]. Sanford Aklein: University of Wisconsin-Madison, 2006.
  • 10许成木,李明,季旭,蔡伟平.槽式太阳能聚光器焦面能流密度分布的频数统计分析[J].光学学报,2013,33(4):45-51. 被引量:17

二级参考文献116

共引文献136

同被引文献246

引证文献31

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部