期刊文献+

汇聚太阳能流体流速对吸热器温度场和应力场影响 被引量:2

Effects of Fluid Velocity on Temperature and Thermal Stress Field of Tube Receiver under Concentrated Solar Irradiation
下载PDF
导出
摘要 为研究高汇聚太阳能流体流速对管式吸热器的温度场、热应变及热应力场的影响,本文采用蒙特卡洛与有限单元相结合的光热力顺序解耦计算法分析了不同流速下管式吸热器的温度场、热应变及热应力场的分布。计算结果表明管式吸热器的温度场、热应变及等效热应力均随着流体流速的增加而降低。与轴向热应力和径向热应力相比,切向热应力对管式吸热器的等效热应力的贡献比例更大,均匀化温度沿管式吸热器的圆周方向分布是热应力抑制的有效手段之一。 The ray thermal structural sequential coupled field analysis method was established by Monte Carlo ray tracing and finite element combined method. The effects of fluid velocity on temperature field,thermal stress field and total strain field of solar tube receiver were investigated by the ray thermal structural sequential coupled field analysis method. The temperature distribution,total strain filed and thermal stress field of different fluid velocity conditions were obtained by the ray thermal structural sequential coupled field analysis method. The numerical simulation results indicated that the value total strain and thermal stress decreased with the increasing of fluid velocity. Compared with the axial thermal stress and radial thermal stress,the tangential thermal stress was a major contribution to the maximum effective stress.An effective way of thermal stress refrain is to decrease the temperature gradient along the circumferential direction of solar tube receiver.
出处 《节能技术》 CAS 2015年第2期103-107,112,共6页 Energy Conservation Technology
基金 国家自然科学基金(51406239) 山东省自然科学基金(ZR2014EEP001) 威海市大学共建基金(2014DXGJ07)
关键词 太阳能 吸热器 蒙特卡洛 热应力 有限元 solar energy receiver monte carlo thermal stress finite element method
  • 相关文献

参考文献13

  • 1屠楠,魏进家,方嘉宾.太阳能腔式吸热器表面反射率的选择[J].工程热物理学报,2014,35(4):700-704. 被引量:1
  • 2Mao Q J, Xie M, Tan H P. Effects of material selec- tion on the radiation flux of tube receiver in a dish solar system [J]. Heat Transfer Research ,2014 ,g5 (4) :339 - 347.
  • 3Cheng Z D, He Y L, Xiao J, Cui F Q, Du B C, Zheng Z J, Xu Y. Comparative and sensitive analysis for parabolic trough solar collectors with a detailed Monte Carlo ray -tracing optical model[J]. Appl. Energy,2014(115) :559 -572.
  • 4Wang F Q, Shuai Y, Yuan Y, Yang G, Tan H P. Ther- mal stress analysis of eccentric tube receiver using concentrated so- lar radiation [J]. Solar Energy ,2010,85 (10) : 1809 - 1815.
  • 5Verlotski V, Schaus M, Pohl M. A solar thermal mgo- powder receiver with working temperatures of more than 1600℃ : model investigation by using laser as an irradiation source [J]. Solar Energy Materials and Solar Cells,1997,45(3) :227 -239.
  • 6Flares V C, Almanza R F. Behavior of compound wall copper - steel receiver with stratified two - phase flow regimen in transient states when solar irradiance is arriving on one side of receiver[J]. Solar Energy,2004(76) : 195 - 198.
  • 7Lata J M, Rodriguez M A, Lara M A. High flux cen- tral receivers of molten salts for the new generation of commer- cial stand - alone solar power plants[J]. Journal of Solar Energy Engineering, 2008 (130) :0211002.
  • 8Kumar N S, Reddy K S. Thermal analysis of solar par- abolic collector with porous disc receiver[J]. Applied Energy, 2009 (86) : 1804 - 1812.
  • 9Wang F Q, Shuai Y,Yuan Y, Liu B. Effects of mate- rial selection on the thermal stresses of tube receiver under con- centrated solar irradiation [J]. Materials and Design, 2012 ( 33 ) :.284 - 291.
  • 10Wang F Q, Shuai Y, Tan H P,Lin R Y, Cheng P, Re- searches on a new type of solar surface cladding reactor with con- centration quartz window[J]. Solar Energy,2013(94) :177 -181.

二级参考文献4

  • 1J.B. Fang,N. Tu,J.J. Wei.Numerical investigation of start-up performance of a solar cavity receiver[J].Renewable Energy.2013
  • 2Qiang Yu,Zhifeng Wang,Ershu Xu.Simulation and analysis of the central cavity receiver’s performance of solar thermal power tower plant[J].Solar Energy.2011(1)
  • 3J.B. Fang,J.J. Wei,X.W. Dong,Y.S. Wang.Thermal performance simulation of a solar cavity receiver under windy conditions[J].Solar Energy.2010(1)
  • 4崔福庆,何雅玲,李东,陶于兵,程泽东.塔式吸热器中辐射传播过程的参数分析[J].工程热物理学报,2011,32(8):1375-1378. 被引量:2

同被引文献18

  • 1王金明.背压汽轮机的背压起动方式探讨[J].节能技术,1996,14(1):11-13. 被引量:1
  • 2Luo Y. , Du X. Z. , Yang L. J. , et al. Numerical Simula- tion on the Performance of a Combination of External and CavityAbsorber for Solar Power Plant [ J ]. Energy Procedia, 2014,49 (10) :428 -437.
  • 3Badescu V. Theoretical derivation of heliostat tracking errors distribution [ J ]. Sol Energy 2008,82 ( 12 ) : 1192 - 1197.
  • 4Muftuoglu A. , Bilgen E. Heat transfer in inclined rec- tangular receivers for concentrated solar radiation [ J ]. Interna- tional Communications in Heat and Mass Transfer,2008,35 (5) : 551 - 556.
  • 5Hirt C. W. , Nichols B. D. Volume of fluid (VOF) method for the dynamics of free boundaries [ J ]. J Comput Phys 1981,39( 1 ) :201 -205.
  • 6Lee W. H. A Pressure Iteration Scheme for Two - Phase Flow Modeling [ J ]. In T. N. Veziroglu ( Ed. ), MULTI- PHASE TRANSPORT: FUNDAMENTALS, REACTOR SAFETY, APPLICATION, Washington, DC : Hemisphere Publishing, 1980 : 407 - 432.
  • 7杨敏林,杨晓西,林汝谋,袁建丽.太阳能热发电技术与系统[J].热能动力工程,2008,23(3):221-228. 被引量:78
  • 8方嘉宾,魏进家,董训伟,王跃社.腔式太阳能吸热器热性能的模拟计算[J].工程热物理学报,2009,30(3):428-432. 被引量:19
  • 9贾培英,王跃社,于浩,余琴.太阳能腔式吸热器沸腾传热性能研究[J].工程热物理学报,2010,31(7):1151-1154. 被引量:2
  • 10江宁,曹祖庆.温态、热态启动中的最佳温度匹配方式探讨[J].中国电机工程学报,1999,19(9):57-61. 被引量:12

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部