期刊文献+

Q245钢表面等离子堆焊Fe-Cr-Ti-C层的组织与耐磨性能 被引量:3

Microstructure and Wear Resistance of Iron-Chromium-Titanium-Carbon Plasma Surfacing Welding Coatings on Plain Carbon Steel
下载PDF
导出
摘要 为了研制一种铁基耐磨复合材料,采用等离子堆焊技术制备了3组Fe-Cr-Ti-C系合金堆焊层。在MLS-23型湿砂橡胶轮式磨损试验机上进行磨粒磨损试验,采用JSM-6360LV型扫描电子显微镜(SEM)和布鲁克D8型衍射仪等技术,观察了堆焊层的组织、碳化物形貌及磨损形貌,探讨了磨损机理。结果表明:随着堆焊层中Ti含量的提高,其组织由奥氏体加铁素体向马氏体转变,碳化物Ti C及M7C3等硬质相的数量逐渐增多、且分布弥散均匀;当Ti含量为9.67%时,Ti C和M7C3硬质相均匀弥散分布在具有较强韧性的板条马氏体中,堆焊层显现出优良的耐磨损性能。 Three Fe-based wear-resistant composite coatings with different composition,denoted as FeCr-Ti-C,were prepared on Q245 steel substrate by plasma surfacing welding.The abrasive wear behavior of as- prepared Fe-Cr-Ti-C surfacing coatings was evaluated with an MLS-23 wet rubber-wheel abrasive wear tester.The phase structure,carbide morphology and worn surface morphology of the surfacing coatings were analyzed by scanning electron microscopy and X-ray diffraction,and the wear mechanisms of the composite coatings were then discussed.Results indicated that with increasing Ti content of the surfacing coatings,the phase species of the coatings were transformed from austenite plus ferrite to martensite,while the volume fraction of M_7C_3 and TiC hard carbides increased and they tended to be distributed uniformly therewith.When the Ti content was 9.67%(mass fraction),TiC and M_7C_3 hard phases were dispersed uniformly in lath- like martensite matrix with higher strength and toughness,which helped to effectively improve the wear resistance of the surfacing coatings.
出处 《材料保护》 CAS CSCD 北大核心 2015年第3期54-56,9,共3页 Materials Protection
基金 辽宁省教育厅科学技术研究(L2012152) 辽宁省博士科研启动基金项目(20141082)资助
关键词 Fe-Cr—Ti-C系堆焊层 组织结构 耐磨性 Fe-Cr-Ti-C surfacing welding coating microstructure wear resistance
  • 相关文献

参考文献4

二级参考文献12

  • 1王清宝,王智慧,李世敏.Fe-Cr-C系高碳耐磨堆焊合金组织及性能[J].焊接学报,2004,25(6):119-123. 被引量:39
  • 2蒋旻,栗卓新,蒋建敏,史耀武.高硬度高耐磨自保护金属芯堆焊焊丝[J].焊接学报,2006,27(1):69-71. 被引量:14
  • 3Wang Z H, Wang Q B, Cui L, et al. Influence of cooling rate and composition on orientation of primary carbides of Fe-Cr-C hardfacing alloys[ J]. Science and Technology of Welding and Joining, 2008, 13(7) : 656 -662.
  • 4Atamert S, Bhadeshia H K D H. Microstructure and stability of Fe-Cr-C hardfacing alloys [ J ]. Materials Science and Engineering, 1990, 130(3): 101-111.
  • 5Buchely M F, Gutierrez J C, Leon L M, et al. The effect of microstructure on abrasive wear of hardfacing alloy [ J ]. Wear, 2005, 259(5) : 52 -61.
  • 6Sapate S G, Rama Rao A V. Effect of carbide volume fraction on erosive wear behaviour of hardfacing cast irons [ J ]. Wear, 2004, 256 ( 3 ) : 774 - 786.
  • 7Svensson L E, Gretoft B, Ulander B, et al. Fe-Cr-C hardfacing alloys for high-temperature applications [ J ]. Journal of Materials Science, 1986, 21 ( 1 ) : 1015 - 1019.
  • 8Suh N P. An overview of the delamination thery of wear[J]. Wear, 1977, 44(5): 1 -15.
  • 9Correa E O, Alcantara N G, Tecco D G, et al. The relationship between the microstructure and abrasive resistance of a hardfacing alloy in the Fe-Cr-C-Nb-V system[ J]. Metallurgical and Materials Transactions A, 2007, 38(8) : 1671 - 1780.
  • 10龚建勋,李煌,肖逸锋,张清辉.Fe-C-Cr-V-B系高铬堆焊合金的显微组织及耐磨性[J].材料工程,2009,37(5):22-25. 被引量:23

共引文献27

同被引文献41

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部