期刊文献+

基于核典型相关分析的图像放大算法 被引量:2

Image super-resolution via kernel canonical correlation analysis
下载PDF
导出
摘要 为了更有效地映射高、低分辨率图像到变换域,提高图像的分辨率,给出一种基于核典型相关分析的单幅图像超分辨率放大算法。首先将训练高、低分辨率图像块矩阵映射到变换域上,利用核典型相关分析得到最优的变换域基向量,然后在该变换域上重建测试低分辨率图像,再转换到原空间上得到初始放大结果,最后利用迭代反投影算法进一步提高图像的质量。实验结果表明,新算法可提高图像的分辨率,并能重建出图像较多的细节,人工痕迹少。 In order to improve image resolution by mapping effectively high-and low-resolution image into transform domain,a single image super-resolution algorithm via kernel canonical correlation analysis is proposed.The algorithm maps the matrices of high-and low-resolution training image patches into transform domain and obtains the optimal base vectors via kernel canonical correlation analysis.Furthermore,the test low-resolution image is reconstructed in the transform domain and converted to the original space to gain the initial result.At last,an iterative back projection algorithm is used to further improve the image quality.Experimental results show that the new algorithm can improve the image resolution and reconstruct richer details and fewer artifacts.
出处 《西安邮电大学学报》 2015年第2期52-57,76,共7页 Journal of Xi’an University of Posts and Telecommunications
基金 国家自然科学基金资助项目(61340040) 西安邮电大学青年教师科研基金资助项目(ZL1204)
关键词 图像超分辨率 核典型相关分析 迭代反投影 变换域 相关度 image super-resolution kernel canonical correlation analysis iterative back projection transform domain correlation
  • 相关文献

参考文献15

  • 1Hotelling H. Relation between two sets of variates EJ]. Biometrika, 1936, 28(3/4): 312-377.
  • 2Huang Hua, He Huiting, Fan Xin, et al. Super-reso- lution of human face image using canonical correlation analysis[J]. Pattern Recognition, 2010, 43(7)~ 2532- 2543.
  • 3An L, Bhanu B. Face image super-resolution using 2D CCA[J/OL]. Signal Processing, 2014, 103(10) :184- 194.
  • 4http://www, ee. uer. edu/~ lan/papers/AnNeu- rocomputing14, pdf. An L, Thakoor N, Bhanu 13. Vehicle logo super-reso- lution by canonical correlation analysis[C]//IEEE In- ternational Conference on Image Processing, Orlando, FL.. IEEE, 2012: 2229-2232.
  • 5Chen Xiaoxuan, Qi Churl Nonlinear neighbor embed- ding for single image super-resolution via kernel map- ping[J]. Signal Processing, 2014,94(1) ~ 6-22.
  • 6郭辉.基于KCCA的特征匹配方法[J].科学技术与工程,2013,21(12):3488-3491. 被引量:3
  • 7贺云辉,赵力,邹采荣.一种基于KCCA的小样本脸像鉴别方法[J].应用科学学报,2006,24(2):140-144. 被引量:8
  • 8Irani M, Peleg S. Irani M, by image registration EJ]. et al. Improving resolution CVGIP~ Graphical Models and Image Processing, 1991, 53(3): 231-239.
  • 9Yang Jianchao, Wright J, Huang T, et al. Image su- per-resolution via sparse representation I-J1. IEEE Transactions on Image Processing, 2010, 19 (11 : 2861-2873.
  • 10Hou H S, Andrews H C. Cubic splines for image in- terpolation and digital filtering[-J~. IEEE Transactions on Signal Processing, 1978, 26(6); 508-517.

二级参考文献24

  • 1黄建军,谢维信.半抑制式模糊C-均值聚类算法[J].中国体视学与图像分析,2004,9(2):109-113. 被引量:11
  • 2Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs fisherfaces:Recognition using class special linear projection[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 3Mika S,et al.Fisher discriminant analysis with kernels.Proceedings of Neural Networks for Signal Processing Workshop[C].Madison,USA,1999,41-48.
  • 4Ma J,Sancho-G6mez J L,Ahalt S C.Nonlinear multiclass discriminant analysis[J].IEEE Signal Processing Letters,2003,10(7):196-199.
  • 5Baudat G,Anouar F.Generalized discriminant analysis using a kernel approach[J].Neural Computation,2000,12(10):2385-2404.
  • 6Liu K,et al.An efficient algorithm for Foley-Sammon optimal set of discriminant vectors by algebraic method[J].Int J Pattern Recg Artif Intell,1992,6(5):817-829.
  • 7Lattin J M,Carrol J D,Grean P E.Analyzing Multivariate Data[M].Brooks/Cole,USA,2003.
  • 8Barker M,Rayens W.Partial least square for discrimination[J].Journal of Chemometrics,2003,17:166-173.
  • 9Bartlett M S.Further aspects of the theory of multiple regression[J].Proc Camb Philos Soc,1938,34:33-40.
  • 10Scholkopf B,Somla A,Muller K R.Nonlinear component analysis as a kernel eigenvalue problem[J].Neural Computation,1998,10(5):1299-1319.

共引文献17

同被引文献28

  • 1GonzalezC,WoodsE.数字图像处理[M].阮耿琦,阮宇智,译.北京:电子工业出版社,2003.
  • 2Chavez H? Ponomaryov V. Super Resolution ImageGeneration Using Wavelet Domain Interpolation WithEdge Extraction via a Sparse Representation [ JIEEE Geoscience and Remote Sensing Letters, 2014,10(11): 1777-1781.
  • 3Zhang Kaibing,Gao Xinbo,Tao Dacheng,et al. Sin-gle image super-resolution with non-local means andsteering kernel regression[J]. IEEE Transactions onImage Processing,2012,21(11): 4544-4556.
  • 4Agrawal M,Dash R. Image super-resolution by inter-polating high frequency sub-bands of image using sur-face fitting [C]// International Conference on SignalProcessing and Communication. Noida: IEEE, 2013 :430-434.
  • 5Wu Xiaomin,Fan Jiulun, Xu Jian, et al. Waveletdomain multi-dictionary learning for single imagesuper-resolution [ J/OL]. Journal of Electrical andComputer Engineering, 2015. http://www. hindawi.com/journals/jece/2015/526508.
  • 6Liu Guangcai,Lin Zhouchen, Sun Ju. Robust sub-space segmentation by low-rank representation [ C]//Proceedings of the 27th International Conference onMachine Learning. Haifa: IEEE, 2010: 663-670.
  • 7Tai Yuwing, Liu Shuaicheng, Brown S,et al. Superresolution using edge prior and single image detailsynthesis[C]//IEEE Computer Society Conference onComputer Vision and Pattern Recognition. San Fran-.
  • 8Wright J, Ganesh A, Rao S,et al. Robust principalcomponent analysis : Exact recovery of corrupted low-rank matrices via convex optimization[C]//Advancesin neural information processing systems. New York:IEEE, 2009: 2080-2088.
  • 9Kim I,Franz O, Scholkopf B. Iterative kernel princi-pal component analysis for image modeling[J], IEEETransactions on Pattern Analysis and Machine Intelli-gence, 2005, 27(9): 1351-1366.
  • 10Glasner D, Bagon S,Irani M. Super-resolution from asingle image[C]//IEEE 12th International Conferenceon Computer Vision. Kyoto: IEEE, 2009 : 349-356.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部