期刊文献+

Estimation of transition redshift based on Reinsch splines 被引量:1

Estimation of transition redshift based on Reinsch splines
下载PDF
导出
摘要 Many schemes have been proposed to define a model-independent con- straint on cosmological dynamics, such as the nonparametric dark energy equation of state ω(z) or the deceleration parameter q(z). These methods usually contain deriva- tives with respect to observational data with noise. However, there can be large un- certainties when one estimates values with numerical differentiation, especially when noise is significant. We introduce a global numerical differentiation method, first for- mulated by Reinsch, which is smoothed by cubic spline functions, and apply it to the estimation of the transition redshift zt with a simulated expansion rate E(z) based on observational Hubble parameter data. We also discuss some deficiencies and limita-tions of this method. Many schemes have been proposed to define a model-independent con- straint on cosmological dynamics, such as the nonparametric dark energy equation of state ω(z) or the deceleration parameter q(z). These methods usually contain deriva- tives with respect to observational data with noise. However, there can be large un- certainties when one estimates values with numerical differentiation, especially when noise is significant. We introduce a global numerical differentiation method, first for- mulated by Reinsch, which is smoothed by cubic spline functions, and apply it to the estimation of the transition redshift zt with a simulated expansion rate E(z) based on observational Hubble parameter data. We also discuss some deficiencies and limita-tions of this method.
出处 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2015年第3期305-312,共8页 天文和天体物理学研究(英文版)
基金 Supported by the National Natural Science Foundation of China
关键词 cosmological parameters -- methods data analysis -- numerical cosmological parameters -- methods data analysis -- numerical
  • 相关文献

参考文献29

  • 1Ahnert, K., & Abel, M. 2007, Computer Physics Communications, 177, 764.
  • 2Benitez-Herrera, S., Ishida, E. E. O., Maturi, M., et al. 2013, MNRAS, 436, 854.
  • 3Blake, C., Brough, S., Colless, M., et al. 2012, MNRAS, 425, 405.
  • 4Busca, N. G., Delubac, T., Rich, J., et al. 2013, A&A, 552, A96.
  • 5Chen, Y., & Ratra, B. 2011, Physics Letters B, 703, 406.
  • 6Chuang, C.-H., & Wang, Y. 2013, MNRAS, 435, 255.
  • 7Clarkson, C., & Zunckel, C. 2010, Physical Review Letters, 104, 211301.
  • 8Daly, R. A., & Djorgovski, S. G. 2003, ApJ, 597, 9.
  • 9Farooq, O., & Ratra, B. 2013, ApJ, 766, L7.
  • 10Gaztafiaga, E., Cabr6, A., & Hui, L. 2009, MNRAS, 399, 1663.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部