期刊文献+

基于软件失效链的软件错误行为分类研究 被引量:2

Research on Software Error Behavior Classification Based on Software Failure Chain
下载PDF
导出
摘要 目前软件应用广泛,对软件可靠性要求越来越高,研究软件的缺陷—错误—失效过程,提前预防失效的发生,减小软件失效带来的损失是十分必要的。研究描述软件错误行为的属性有助于独一无二地描述不同的错误行为,为建立软件故障模式库、软件故障预测和软件故障注入提供依据。文中基于软件失效链的理论,分析软件缺陷、软件错误和软件失效构成的因果链,由缺陷—错误—失效链之间的因果关系,进一步分析描述各个阶段异常的属性集合之间的联系。以现有的IEEE软件异常分类标准研究成果为基础,通过缺陷属性集合和失效属性集合来推导出错误属性集合,给出一种软件错误行为的分类方法,并给出属性集合以及参考值,选取基于最小相关和最大依赖度准则的属性约简算法进行实验,验证属性的合理性。 Software applications are more important than before. The requirements of reliability are more and more higher. It is very neces- sary to study the process of software defect-error-failure, to prevent failure happened in advance and reduce losses. It is helpful to de- scribe the unique software error behavior and help developers to communicate about this field. It also provides more support with software fault pattern library, software fault detection and fault injection. Based on software failure chain theory, analyze the causal chain of software defect-error-failure, further analyzing and describing each stage abnormal relationships between attributes sets. Based on the existing IEEE software anomaly classification standard, give out software error attributes sets and reference values and a way to classify error behaviors. Verify rationality of attributes by the attribute reduction algorithm of minimal mutual information and maximal dependency.
出处 《计算机技术与发展》 2015年第4期1-5,共5页 Computer Technology and Development
基金 江苏省产学研联合创新资金项目(BY2013095)
关键词 软件失效链 软件错误行为 错误行为分类 属性验证 software failure chain software error behavior error behavior classification attribute verification
  • 相关文献

参考文献13

  • 1IEEE standard glossary of software engineering terminology [S]. IEEE Std 610,12-1990,1990.
  • 2王斌,吴太文,胡培培.软件缺陷分类和分析研究[J].计算机科学,2013,40(9):16-20. 被引量:12
  • 3IEEE standard classification for software anomalies[ S]. IEEE Std 1044-2009,2009.
  • 4Ko A J, Myers B A. A framework and methodology for studying the causes of software errors in programming systems [ J ].Journal of Visual Languages and Computing ,2005,16 (1-2 ) : 41-84.
  • 5Fenton N E, Ohlsson N. Quantitative analysis of faults and fail- ures in a complex software system [ J ]. IEEE Transactions on Software Engineering,2000,26(8) :797-814.
  • 6Schneidewind N F. Software reliability model with optimal se- lection of failure data[J]. IEEE Transactions on Software En- gineering, 1993,19 ( 11 ) : 1095-1104.
  • 7Walia G S. Using error modeling to improve and control soft- ware quality: an empirical investigation [ D ]. Mississippi : Mis- sissippi State University,2009.
  • 8Parsa S, Vahidi-Asl M, Naree S A. Finding causes of software failure using ridge regression and association rule generation methods[ C]//Proc of the 9th ACIS international conference on software engineering, artificial intelligence, networking, and parallel/distributed computing. Phuket : IEEE, 2008 : 873 - 878.
  • 9Avi.ienis A, Laprie J C, Randell B, et al. Basic concepts and taxonomy of dependable and secure computing [ J ]. IEEE Transactions on Dependable and Secure Computing, 2004, 1 (1) :11-33.
  • 10Jacobs J,van Moll J, Krause P, et al. Exploring defect causes in product developed by virtual teams [ J ]. Information and Software Technology, 2005,47 ( 6 ) : 399 -410.

二级参考文献40

  • 1聂林波,刘孟仁.软件缺陷分类的研究[J].计算机应用研究,2004,21(6):84-86. 被引量:39
  • 2刘英博,王建民.面向缺陷分析的软件库挖掘方法综述[J].计算机科学,2007,34(9):1-4. 被引量:11
  • 3IEEE Std 729-1983[S].Standard Glossary of Software Engineering Terminology.IEEE,1990.
  • 4Ploski J,Rohr M,Schwenkenberg P.Research issues in software fault categorization[J].ACM SIGSOFT Software Engineering Notes,2007,32(6):1-8.
  • 5Chillarege R,Bhandari I S,Chaar J K,et al.Orthogonal defect classification a concept for in-process measurements[J].IEEE Transactions on Software Engineering,1992,18(11):943-956.
  • 6IBM Research Center for Software Engineering.Orthogonal Defect Classification.http://www.research.ibm.com/softeng/ODC/ODC.HTM,2002.
  • 7Wang H,Wang H,Lin Z Q.Improving Classification Efficiencyof Orthogonal Defect Classification Via a Bayesian Network Approach[C]∥Computational Intelligence and Software Enginee-ring.2009:1-4.
  • 8Li Ning,Li Zhan-huai,Sun Xi-ling.Classification of SoftwareDefect Detected by Black-box Testing:An Empirical Study[C]∥Second WRI World Congress on Software Engineering.2010:234-240.
  • 9Huang Li-guo,Ng V,Persing I.AutoODC:Automated Generation of Orthogonal Defect Classifications[C]∥Automated Software Engineering(ASE).2011:412-415.
  • 10IEEE Std 1044-2009[S].Standard Classification for Anomalies.IEEE,2009.

共引文献11

同被引文献26

  • 1刘英博,王建民.面向缺陷分析的软件库挖掘方法综述[J].计算机科学,2007,34(9):1-4. 被引量:11
  • 2Catal C, Diri B. A systematic review of software fault predic- tion studies [ J ]. Export Systems with Applications, 2009,36 : 7346-7354.
  • 3Hall T, Beecham S, Bowes D, et al. A systematic literature re- view on fault prediction performance in software engineering [ J ]. IEEE Transactions on Software Engineering, 2011,38 (6) :1276-1304.
  • 4Wang J, Shen B J, Chen Y T. Compressed CA. 5 models for software defect prediction [ C ]//2012 12th international con- ference on quality software. [s. 1. ] :IEEE,2012:13-16.
  • 5Wang T, Li W H. Naive Bayes software defect prediction mod- el [ C ]//International conference on computational intelli- gence and software engineering. [ s. 1. ] :IEEE,2010:1-4.
  • 6Elish K, Elish M. Predicting defect-prone software modules u- sing support vector machines [ J ]. Journal Systems and Soft- ware,2008,81 (5) :649-660.
  • 7Thwin M M T, Quah T S. Application of neural networks for software quality prediction using object-oriented metrics [ J ]. Journal of Systems and Software ,2005,76(2) :147-156.
  • 8Zheng J. Cost-sonsitiveboosting neural networks for software defect prediction[ J]. Export Systems with Applications ,2010,37(6) :4537-4543.
  • 9Jing X Y,Ying S,Zhang Z W,et 81. Dictionary learning based software defect prediction[ C]//Proceedings of the 36th inter- national conference on software engineering. [ s. 1. ] : ACM, 2014:414-423.
  • 10Jing X Y, Zhang Z W, Ying S, et al. Software defect prediction based on collaborative representation classification [ C ]//Pro- ceedings of the 36th international conference on software engi- neering. [ s. 1. ] : ACM ,2014:632-633.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部