期刊文献+

Oxidation-based wet-etching method for Al Ga N/Ga N structure with different oxidation times and temperatures

Oxidation-based wet-etching method for Al Ga N/Ga N structure with different oxidation times and temperatures
原文传递
导出
摘要 In this article, a detailed analysis of the wet- etching technique for AIGaN/GaN heterostructure using dry thermal oxidation followed by a wet alkali etching was performed. The experimental results show that the oxida- tion plays a key role in the wet-etching method and the etching depth is mainly determined by the oxidation tem- perature and time. The correlation of etching roughness with oxidation time and temperature was investigated. It is found that there exists a critical oxidation temperature in the oxidation process. Finally, a physical explanation of the oxidation procedure for A1GaN layer was given. In this article, a detailed analysis of the wet- etching technique for AIGaN/GaN heterostructure using dry thermal oxidation followed by a wet alkali etching was performed. The experimental results show that the oxida- tion plays a key role in the wet-etching method and the etching depth is mainly determined by the oxidation tem- perature and time. The correlation of etching roughness with oxidation time and temperature was investigated. It is found that there exists a critical oxidation temperature in the oxidation process. Finally, a physical explanation of the oxidation procedure for A1GaN layer was given.
出处 《Rare Metals》 SCIE EI CAS CSCD 2015年第1期1-5,共5页 稀有金属(英文版)
基金 financially supported by the National Natural Science Foundation of China (Nos. 60406004, 60890193, and 60736033) the National Key Micrometer/Nanometer Processing Laboratory
关键词 Wet-etching AIGAN/GAN Atomic forcemicroscopy Rapid thermal annealing Wet-etching AIGaN/GaN Atomic forcemicroscopy Rapid thermal annealing
  • 相关文献

参考文献15

  • 1Mikulics M, Fox A, Marso M, Griitzmacher D, Donoval D, Kordos P. Electrical and structural characterization of AIGaN/GaN field- effect transistors with recessed gate. Vacuum. 2012; 86(6):754.
  • 2Sun H, Alt AR, Tirelli S, Marti D, Benedickter H, Piner E, Bolognesi CR. Nanometric AIGaN/GaN HEMT performance with implant or mesa isolation. IEEE. 2011;32(8): 1056.
  • 3Anderson TJ, Tadjer M J, Mastro MA, Hite JK, Hobart KD, Eddy CR, Kub FJ. An AlN/Ultrathin A1GaN/GaN HEMT structure for enhancement-mode iperation using selective etching. IEEE. 2009;30(12): 1251.
  • 4Cojocari O, Popa V, Ursaki VV, Tiginyanu 1M, Hartnagel HL, Daumiller I. GaN Schottky multiplier diodes prepared by elec- troplating: a study of passivation technology. Semicond Sci Technol. 2004;19(3): 1273.
  • 5Qiu RF, Lu H, Chen DJ, Zhang R, Zheng YD. Optimization of inductively coupled plasma deep etching of GaN and etching damage analysis. Appl Surf Sci. 2011;257(7):2700.
  • 6Kim BJ, Lee JW, Park HS, Park Y, Kim TI. Wet etching of (0001) GaN/(A1203) grown by MOVPE. J Electron Mater. 1998; 27(5):L32.
  • 7Heo K, Cho E, Yang JE, Kim M-H, Lee M, Lee BY, Kwon SG, Lee M-S, Jo M-H, Choi H-J, Hyeon T, Hong S. Large-scale assembly of silicon nanowire network-based devices using con- ventional microfabrication facilities. Nano Lett. 2008;8( 12):4523.
  • 8Baneljee A, Taking S, Macfarlane D, Dabirml A and Wasige A. Development of enhancement mode A1GaN/GaN MOS-HEMTs using localized gate-foot oxidation. In: Proceedings of the 5th European Microwave Integrated Circuits Conference. Paris. EuMA. 2010, p 302.
  • 9Higashiwaki M, Chowdhury S, Swenson BL. Effects of oxida- tion on surface chemical states and barrier height of AIGaN/GaN heterostructures. Appl Phys Lett. 2010;L97:222104.
  • 10Prabhakaran K, Andersson TG, Nozawa K. Nature of native oxide on GaN surface and its reaction with AI. Appl Phys Lett. 1996;69(21 ):3212.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部