期刊文献+

领域概念的三层递进筛选方法研究 被引量:2

A Domain Concepts Triple-layer Filter Method
原文传递
导出
摘要 【目的】通过运用叙词表和文本两种数据源和三种概念筛选方法提高领域概念筛选的效率。【方法】提出一种领域概念三层递进筛选方法,从叙词表和文本两种数据源提取领域概念,利用概念相关性、上下文和领域性以点到面三层递进的方式计算领域概念的概念属性和领域属性。【结果】实验结果表明,基于概念相关性、上下文和领域性的三层递进筛选方法将准确率和召回率分别提高到74.71%和71.25%。【局限】实验数据只来自测绘领域,还未使用其他领域的数据验证该方法的可行性。【结论】本研究提高领域概念筛选的准确率和召回率,综合效率高于样本中的其他方法,能够更加高效地筛选出不同学科的领域概念。 [Objective] To improve the efficiency of concepts filter by using three concept filter method with thesaurus and text. [Methods] This paper proposes a method for domain concepts triple-layer filter. Extract domain concepts from data sources containing thesaurus and text. Focuse on calculating the concepts properties and field properties of domain concepts through concepts correlation, concepts context and concepts territoriality. [Results] Experimental results show that the precision reaches 74.71% and the recall reaches 71.25% based on triple-layer filter method. [Limitations] Data sources are only about mapping, this paper doesn't use the data in other fields to demonstrate the feasibility of method. [Conclusions] This paper improves the precision and recall of domain concepts filter. Comprehensive efficiency is higher than other methods. This method could filter domain concepts from different subjects with high efficiency.
作者 余凡 楼雯
出处 《现代图书情报技术》 CSSCI 2015年第4期26-33,共8页 New Technology of Library and Information Service
基金 国家社会科学基金重大项目"基于语义的馆藏资源深度聚合与可视化展示研究"(项目编号:11&ZD152) 中国博士后科学基金项目"大数据在乳制品质量安全信息风险治理中的应用研究"(项目编号:2014M552089)的研究成果之一
关键词 三层概念筛选 概念相关性 概念上下文 概念领域性 叙词表 Triple-layer concepts filter Concepts correlation Concepts context Concepts territoriality Thesaurus
  • 相关文献

参考文献15

  • 1丁晟春,傅柱.基于航天叙词表的领域本体半自动化构建研究[J].情报理论与实践,2011,34(11):113-116. 被引量:17
  • 2Hahn V.Turning Informal Thesauri into Formal Ontologies:A Feasibility Study on Biomedical Knowledge Re-use [J].Comparative and Functional Genomics,2003,4(1):94-97.
  • 3Missikoff M,Navigli R,Velardi P.Integrated Approach to Web Ontology Learning and Engineering [J].Computer,2002,35(11):60-63.
  • 4涂新辉,何婷婷,李芳,王建文.基于排序学习的文本概念标注方法研究[J].北京大学学报(自然科学版),2013,49(1):153-158. 被引量:2
  • 5Shamsfard M.,Barforoush A.Learning Ontologies from Natural Language Texts [J].International Journal of Human Computer Studies,2004,60(1):17-63.
  • 6Damerau F J.Evaluating Domain-oriented Muiti-Word Terms from Text [J].Information Processing and Management,2006,29(4):433-447.
  • 7Cohen J D.Highlights:Language-and Domain-Independent Automatic Indexing Terms for Abstracting [J].Journal of the American Society Information Science,2007,46(3):162-174.
  • 8顾晓雪,章成志.中文博客标签的聚类及可视化研究[J].情报理论与实践,2014,37(7):116-122. 被引量:1
  • 9常春,赖院根.数字环境下通用概念获取方法[J].图书情报工作,2011,55(22):22-25. 被引量:9
  • 10ICTCLAS [EB/OL].[2013-07-20].http://ictclas.nlpir.org/.

二级参考文献96

共引文献52

同被引文献69

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部