期刊文献+

一种基于词语抽象度的汉语隐喻识别方法 被引量:1

An Approach to Chinese Metaphor Identification Based on Word Abstractness
原文传递
导出
摘要 【目的】设计一种自动计算汉语词语抽象度的方法,并将其用在自然语言理解中的隐喻识别任务。【方法】以统计学习理论中逻辑回归为计算模型,把神经网络语言模型获取的词语词向量作为特征,通过构建抽象词库得到特征权重向量,计算汉语词语抽象度。提出一种基于词语抽象度的汉语隐喻识别算法,验证该方法的应用效果。【结果】通过与已有的方法进行实验对比,本文设计的汉语词语抽象度计算方法更接近于人的认知常识;并且在隐喻识别任务中,也体现出更好的准确率。【局限】词语词向量表示词语抽象程度有一些缺陷;抽象词语库的规模影响特征权重向量的学习。【结论】词语抽象度计算可以表现为人对概念的一种抽象分类能力,本文提出的汉语词语抽象度计算方法得到的结果能够较好地拟合人的认知,并且实验证明词语抽象度可有效提高隐喻识别的效果。 [Objective] Design a method to automatically compute Chinese word abstractness, and introduce it into metaphor identification task in natural language understanding. [Methods] The word abstractness is computed by logistic regression model. The features are the word vectors computed by neural network model and the feature weight vectors come from a hand coded abstractness dictionary. A metaphor identification algorithm based on word abstractness is proposed to demonstrate the validity of this method. [Results] By comparing with the existing methods of word abstractness computing, this method has better accordance with human cognition and is an effective method in metaphor identification task. [Limitations] The utilization of word vectors for word abstractness is defective. The scale of the abstract words affects the learning of feature weight vectors. [Conclusions] Word abstractness computing reflects the ability to concept classification, Chinese word abstractness computed by this method is better fitting the human cognition, and the experimental results show that word abstractness can improve the effect of metaphor identification.
出处 《现代图书情报技术》 CSSCI 2015年第4期34-40,共7页 New Technology of Library and Information Service
基金 国家自然科学基金青年基金项目"引入涉身认知机制的汉语隐喻计算模型及其实现"(项目编号:61103101) 国家自然科学基金青年基金项目"基于马尔科夫树与DRT的汉语句群自动划分算法研究"(项目编号:61202281) 教育部人文社会科学研究青年基金项目"面向信息处理的汉语隐喻研究"(项目编号:10YJCZH052)的研究成果之一
关键词 词语抽象度 神经网络语言模型 隐喻识别 Word abstractness Neural network language model Metaphor identification
  • 相关文献

参考文献15

  • 1Graesser A C,McNamara D S,Louwerse M M,et al.Coh-Metrix:Analysis of Text on Cohesion and Language [J].Behavior Research Methods,Instruments,& Computers,2004,36(2):193-202.
  • 2McCarthy P M,Renner A M,Duncan M G,et al.Identifying Topic Sentencehood [J].Behavior Research Methods,2008,40(3):647-664.
  • 3Feng S,Cai Z,Crossley S A,et al.Simulating Human Ratings on Word Concreteness [C].In:Proceedings of the 24th International Florida Artifical Intelligence Research Society Conference,Palm Beach,Florida,USA.2011:245-250.
  • 4Gargett A,Ruppenhofer J,Barnden J.Dimensions of Metaphorical Meaning[C].In:Proceedings of the 4th Workshop on Cognitive Aspects of the Lexicon,2014:166-173.
  • 5Turney P,Neuman Y,Assaf D,et al.Literal and Metaphorical Sense Identification Through Concrete and Abstract Context [C].In:Proceedings of the 2011 Conference on the Empirical Methods in Natural Language Processing,Edinburgh,UK.2011:680-690.
  • 6龙涛.抽象名词的隐喻性“有界”空间范畴义[J].武汉大学学报(人文科学版),2011,64(4):112-117. 被引量:13
  • 7官杨.程度副词修饰名词浅析[J].安徽文学(下半月),2008(12):307-308. 被引量:5
  • 8鲁晓雁.抽象名词语义搭配情况调查(之一)[J].学术交流,2002(2):109-112. 被引量:5
  • 9杨玉玲.认知凸显性和带“有”的相关格式[J].修辞学习,2007(5):31-34. 被引量:16
  • 10Bengio Y,Ducharme R,Vincent P,et al.A Neural Probabilistic Language Mode [J].Journal of Machine Learning Research,2003,3:1137-1155.

二级参考文献41

共引文献85

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部