期刊文献+

中华猕猴桃基因组可变剪接事件鉴定及分析 被引量:2

Genome-Wide Survey of Alternative Splicing in Actinidia chinensis
原文传递
导出
摘要 可变剪接使一个基因能产生多种m RNA成熟体,极大地增加蛋白多样性.采用中华猕猴桃基因组数据做参考数据,利用中华猕猴桃叶片和果实3个不同发育时期(未成熟、半成熟和成熟期)的转录组数据,从中华猕猴桃基因组(39040个基因)中共鉴定出11651个基因(占总基因数的29%)对应的32180个可变剪接事件.在可变剪接不同类型中,内含子保留类型的发生频率最高,占50%以上;3′可变位点类型频率约为5′端可变类型的2倍.GO富集分析结果表明,可变剪接的基因主要富集于酶调控及核苷酸结合相关功能的GO类别中,而组织特有可变剪接基因功能富集热点与组织的重要功能关联,叶片多为肌动蛋白及微管相关;未成熟果实与双组分信号系统相关;半成熟果实多与磷脂合成过程相关;成熟果实多与信号传递过程相关.另外,55.6%的维生素合成相关基因发生可变剪接事件,显著高于基因组水平的29.6%,暗示着可变剪接参与维生素合成相关基因代谢过程中的重要作用.通过对中华猕猴桃全基因组可变剪接的分析,为解析中华猕猴桃基因组及进一步开展相关分子育种工作提供依据. Alternative splicing can increase the diversity and complexity of proteome greatly through creating multiple mRNA transcripts from a single gene. RNA-seq data from different organs (leaf, immature fruit, half-ripe fruit and mature fruit) ofActinidia chinensis had been used to identify the alternative splicing events using the A. chinensis genome as reference, and totally 32180 alternative splicing events were discovered from the A. chinensis genome (39040 genes) corresponding to 11651 genes (29% of the total genome). Intron retention events showed the highest frequency (more than 50%) among all the different alternative splicing events. The frequency of events with alternative 3' splice sites was twice than the alternative 5' splice sites. GO enrichment analysis result showed that the alternative splicing gene was mainly enriched in enzyme regulation and nucleotide binding related GO categories. The alternative splicing events in different organs of A. chinensis seemed to preferentially occur in genes with important function. The genes of leaf were associated with the function of actin and microtubule. The genes of immature fruit decided the function of two-component signal system. The genes of half-ripe fruit were connected with phospholipid synthesis process. The genes in mature fruit were associated with signal transduction. In addition, 55.6% of vitamin related genes had been found to have alternative splicing changes, which were significantly higher than the average changes of the genome (the average splicing change level was 29.6%). Those explained that alternative splicing events played an important role in the process of vitamin synthesis. In this paper, through the genome-wide analysis of alternative splicing in A. chinensis, a powerful resource for understanding the complex genome of A. chinensis was provided. The result was also useful to molecular breeding in kiwifruit.
出处 《中国科学:生命科学》 CSCD 北大核心 2015年第3期289-300,共12页 Scientia Sinica(Vitae)
基金 国家自然科学基金(批准号:31370253 31301039和31471536) 武汉市青年科技晨光计划(批准号:201271031395)资助项目
关键词 中华猕猴桃 可变剪接 基因组 维生素 Actinidia chinensis, alternative splicing, genome, vitamin
  • 相关文献

参考文献56

  • 1Arcus A C. Proteolytic enzyme of Actinidia chinensis. Biochim Biophys Acta, 1959, 33: 242-244.
  • 2Cheng C H, Seal A G, Boldingh H L, et al. Inheritance of taste characters and fruit size and number in a diploid Actinidia chinensis (kiwifruit) population. Euphytica, 2004, 138: 185-195.
  • 3Skinner M A, Loh J M S, Hunter D C, et al. Gold kiwifruit (Actinidia chinensis ‘Hort16A') for immune support. Proc Nutr Soc, 2011, 70: 276-280.
  • 4张菊明,林佩芳.中华猕猴桃多糖对巨噬细胞-T细胞免疫介质的作用[J].科技通报,1990,6(5):284-286. 被引量:4
  • 5宋文瑛,许冠华,张光霁.猕猴桃根多糖对人胃癌SGC-7901细胞增殖、凋亡及p-p38表达的影响[J].中国中西医结合杂志,2014,34(3):329-333. 被引量:16
  • 6Wang B B, Brendel V. Genomewide comparative analysis of alternative splicing in plants. Proc Natl Acad Sci USA, 2006, 103: 7175-7180.
  • 7Huang S, Ding J, Deng D, et al. Draft genome of the kiwifruit Actinidia chinensis. Nat Commun, 2013, 4: 2640.
  • 8Berget S M, Moore C, Sharp P A. Spliced segments at the 5' terminus of adenovirus 2 late mRNA. Proc Natl Acad Sci USA, 1977, 74: 3171-3175.
  • 9Tong C, Wang X, Yu J, et al. Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genomics, 2013, 14: 689.
  • 10Reddy A S. Alternative splicing of pre-messenger RNAs in plants in the genomic era. Annu Rev Plant Biol, 2007, 58: 267-294.

二级参考文献99

共引文献259

同被引文献44

  • 1刘海峰,全炳武,田官荣,朴镐用,申晓惠.几种长白山有毒植物提取的生物碱杀虫活性[J].农药,2007,46(1):55-57. 被引量:24
  • 2Berget S M, Moore C, Sharp P A. Spliced segments at the 5' terminus of adenovirus 2 late mRNA. Rev Med Virol, 2000, 10:356-362.
  • 3Gilbert W. Why genes in pieces? Nature, 1978, 271:501.
  • 4Sharp P A. Split genes and RNA splicing. Cell, 1994, 77:805-815.
  • 5Pan Q, Shai O, Lee L J, Frey B J, et al. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet, 2008, 40:1413-1415.
  • 6Ramani A K, Calarco J A, Pan Q, et al. Genome-wide analysis of alternative splicing in Caenorhabditis elegans. Genome Res, 2011, 21: 342-348.
  • 7Graveley B R, Brooks A N, Carlson J W, et al. The developmental transcriptome of Drosophila melanogaster. Nature, 2011, 471: 473-479.
  • 8Marquez Y, Brown J W, Simpson C, et al. Transcriptome survey reveals increased complexity of the alternative splicing landscape in Arabidopsis. Genome Res, 2012, 22:1184-1195.
  • 9Brett D, Pospisil H, Valcarcel J, et al. Alternative splicing and genome complexity. Nat Genet, 2002, 30:29-30.
  • 10Valdivia H H. One gene, many proteins: alternative splicing of the ryanodine receptor gene adds novel functions to an already complex channel protein. Circ Res, 2007, 100:761-763.

引证文献2

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部