期刊文献+

基于复杂网络Newman快速算法的船舶柴油机故障诊断 被引量:1

Fault Diagnosis for Marine Diesel Engine Based on Newman Fast Algorithm in Complex Network
下载PDF
导出
摘要 将船舶柴油机故障诊断中的聚类问题转化为复杂网络社团发现问题,在定义线性相似度、反比相似度、指数相似度和椭圆相似度函数的基础上,构造以相似度权重为边权,以样本点为节点的加权无向网络,提出了利用Newman快速算法中的准则函数作为聚类的准则函数,逐步寻找网络中的社团结构的故障诊断方法。以自主研发的轮机模拟器主机系统故障数据为例进行故障分析与诊断,验证新方法的有效性,并分析阈值和相似度系数变化对方法性能的影响。研究结果表明:新故障诊断方法具有计算量小和准确性高且运算时间短的特点,能够达到在线诊断的要求,有识别未知故障的能力,解决了聚类中必须找到类的问题。 Fault classification and diagnosis process of marine diesel engine was transformed into process of the data sample cluster. Defining functions of linear similarity, inverse similarity, exponential similarity and ellipse similarity and taking similarity as the weighted edge and each sample point as the node, a weighted and undirected network model was constructed. A fault diagnosis method using criterion function of Newman fast algorithm as clustering criterion function to detect gradually the community structure of the network was proposed. Using the fault data of a self-developed marine engine simulator as an example of fault diagnosis, fault analysis and diagnosis were conducted to verify the method and analyze impacts of thresholds and similarity coefficient on the performance of the algorithm. Results show that this method has advantages of effectiveness, computation time short, and satisfying online diagnosis requirements. Moreover, it can recognize unknown fault patterns, solving the problem to find the cluster in cluster analysis.
出处 《内燃机工程》 EI CAS CSCD 北大核心 2015年第2期61-67,共7页 Chinese Internal Combustion Engine Engineering
基金 辽宁省自然科学基金资助项目(201202017)
关键词 内燃机 船舶柴油机 Newman快速算法 故障诊断 IC engine marine diesel engine Newman fast algorithm fault diagnosis
  • 相关文献

参考文献14

二级参考文献48

  • 1杨敏坚,罗振益.用排气分析仪检测发动机缺缸故障[J].汽车电器,2004(9):40-41. 被引量:7
  • 2王荣莉,雷斌.工业以太网技术的现状与发展[J].自动化博览,2004,21(4):63-65. 被引量:32
  • 3曾鸿,张均东,王海燕.三通道立体投影轮机模拟器视景仿真系统[J].大连海事大学学报,2007,33(1):39-42. 被引量:8
  • 4周轶尘 彭勇.发动机缸盖系统振动特性研究[J].内燃机学报,1988,6(1).
  • 5Wang H M, Chen X, An G, et al. IC engine misfire fault diagnosis with contour map based on explosive noise signal resample [J]. ISTM,2003,15:4037-4040.
  • 6Hagan M T, Demuth H B, Beale M. Neural network design[M]. Boston : PWS Publishing Company, 2002.
  • 7魏春源,何长贵.风冷柴油机[M].北京:机械工业出版社,1999.
  • 8Rivol A, Rwhite P. Bispectral analysis of the bilinear oscillator I with application to the dection of fatigue crack[J]. Journal of Sound and Vibration,1998,216(5):889-910.
  • 9CALI A, CALVANESE D, de GIACOMO G, et al. On the expres- sive power of data integration systems [ C]//Proceedings of the 21 st International Conference on Conceptual Modeling. Berlin: Associa- tion for Computing Machinery, 2002:338 -350.
  • 10MOUJANE A, CHIADMI D, BENHLIMA L, et al. A study in the P2P data integration process [ C]//Proceedings of IEEE/ACS Inter- national Conference on Computer Systems and Applications. Rabat: IEEE Computer Society, 2009:57-58.

共引文献64

同被引文献6

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部