期刊文献+

基于CFD方法的阀测试管路设计

Valve test pipeline design based on CFD method
下载PDF
导出
摘要 采用计算流体力学(CFD)方法对加装整流器前、后各种管径管道内湍流流场进行数值仿真计算。研究了整流器对管道流动的整流效果。通过对比加装整流器前、后流场速度、湍流度分布,确定整流后管路中测试阀门的安装高度。结果表明:加装整流器能够有效改善流场品质,使得符合测试阀门安装要求的位置明显降低,对实际管路设计具有重大意义。 Turbulent flow field in pipeline before and after adding rectifier was simulated using computational fluid dynamics (CFD), rectifying effect on pipe flow was studied. Through comparing flow velocity, turbulivity distribution before and after adding rectifier, installation height of test valve after rectifica- tion was identified. The results showed that rectifier could im- prove flow quality effectively,lower installation position of test valve, and be of great significance for actual pipe design.
出处 《消防科学与技术》 CAS 北大核心 2015年第4期513-516,共4页 Fire Science and Technology
关键词 管路设计 整流器 计算流体力学 阀门检测 pipeline design rectifier computational fluid dynamics valve testing
  • 相关文献

参考文献8

  • 1熊鳌魁.湍流模式理论综述[J].武汉理工大学学报(交通科学与工程版),2001,25(4):451-456. 被引量:20
  • 2Townsend A A. The structui"es o{ turbulent shear flows[M]. Cam- bridge: Cambridge University Press, 1976.
  • 3Brown G L, Roshko A. On density effects and large structure in turbulent mixing layer[J]. ]FM, 1974,64: 775.
  • 4Lorenz E N. Deterministic nonperiodic flow[J]. J Atomsopheric Sciences, 1963, 20: 30-141.
  • 5Orszag S A, Patterson G S. Numerical simulation of three-dimen- sional homogeous isotropic turbulence[J]. Physical Review Letter,1972,28(2) :76-79.
  • 6Xu C, Zhang A. Origin of high kurtosis in viscous sublayer[J]. Physics of Fluids, 1996,8(7):1938-1944.
  • 7Thompson J F. Composite grid generation code for 3-D regions- the Eagleeode[-J~.AIAA. J. , 1998,26~271- 272.
  • 8张来平.非结构网格、矩形/非结构混合网格复杂无粘流场的数值模拟[D].北京:中国空气动力研究和发展中心,1997.

二级参考文献31

  • 1[1]Speziale C G. Analytical methods for the development of Reynolds-stress closures in turbulence. Annu. Rev. Fluid Mech., 1991, 23:107~157
  • 2[2]Yoshizawa A. Statistical analysis of the deviation of the Reynolds stress from its eddyviscosity representation. Phys. Fluids, 1984, 27:1377~1387
  • 3[3]Yakhot V,Orszag S A. Renormalization group analy-sis of turbulence I. Basic theory. J. Sci. Comput.,1986,1:3~51
  • 4[4]Smagorinsky J. General circulation experiments with the primitive equations. Mon. Weather Rev., 1963,91:99~165
  • 5[5]Baldwin B S,Lomax H. Thin layer approximation and algebraicmodel for separated turbulent flows. ALAAPap.,1978. 78~257
  • 6[6]Lakshminarayana B. An assessment of computational fluid dynamic techniques in the analysis and design of turbomachinerry-the 1990 freeman scholar lecture. J.Fluids Engng.,1991,113:315~352
  • 7[7]Bradshaw P,Feariss D H,Atwell N P. Calculation of boundary layer development using the turbulent energy equation. J. Fluid Mech.,1967,28:593~616
  • 8[8]Baldwin B S, Barth T J. A one-equation turbulence model for high Reynolds number wall 7bounded flows. NASA TM-102847,1990,1~30
  • 9[9]Patel V C,Rodi W,Scheuerer G. Turbulence models for near-wall and low Reynolds number flows: A review. AIAA Journal, 1984, 23:1308~1319
  • 10[10]Lakshminarayana B. Turbulence modeling for com-plex flows. AIAA Journal,1986,24:1900~1917

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部