期刊文献+

不含某些图作为导出子图的图的色数 被引量:1

On Chromatic Number of Graphs without Certain Induced Subgraphs
下载PDF
导出
摘要 Erods证明了对于任意一个图G,χ(G)-ω(G)可以任意大。因此,对一般图而言,其色数不一定能找到一个与团数有关的上界。文章主要讨论一类特殊的F-free图的色数和团数的关系。设图G=(V,E)是一个不含K1,k+1+e、C4和C4+e为导出子图的连通图,不是星图和奇圈。若α(G)≥k≥3,则χ(G)≤(k(k-1)/2)ω(G)。 In general, there is no upper bound on the chromatic number of a graph in terms of its clique num?ber, since by a classical result of Erodoswe know that the differenceχ( G) -ω( G) can be arbitrarily large. In this thesis, we shall focus on F -free graphs and obtain results that the chromatic number of F -free graphs has upper bound in terms of their clique number. LetG be a{K1,k+1 + e,C4,C4 + e} -free graph,ifα(G) ≥k≥3,thenχ( G) ≤( k( k - 1)/2)ω( G) .
作者 段芳
出处 《新疆师范大学学报(自然科学版)》 2015年第1期22-24,共3页 Journal of Xinjiang Normal University(Natural Sciences Edition)
关键词 色数 团数 F-free Clique number Chromatic number F-free graph
  • 相关文献

参考文献2

二级参考文献16

  • 1H J Broersma, M Kriesell, Z Ryjgt-ek. On factors of 4-connected claw-free graphs, J Graph Theory, 2001, 37: 125-136.
  • 2J Brousek, Z Ryjacek, I Schiermeyer. Forbidden subgraphs, stability and hamiltonicity, Discrete Math, 1999, 197-198: 29-50.
  • 3F Harary, C St J A Nash-Williams. On Eule-'ian and Hamiltonian graphs and line graphs, Canad Math Bull, 1965, 8: 701-709.
  • 4T Kaiser, M Li, Z Ryj-Sek, L Xiong. Hourglasses and Hamilton cycle in 4-connected claw-free graphs, J Graph Theory, 2005, 48: 267-276.
  • 5H J Lai. Graph whose edges are in small cycles, Discrete Math, 1991, 94: 11-22.
  • 6H J Lai, Y Shao, M Zhan. Hamiltonian N2-1ocally connected claw-free graphs, J Graph Theory, 2005, 48: 142-146.
  • 7H M Matthews, D P Sumner. Hamiltonian results in K1,3-free graphs, J Graph Theory, 1984, 8: 139-146.
  • 8Z Ryj--ek. On a closure concept in claw-free graphs, J Combin Theory Ser B, 1997, 70: 217-224.
  • 9RTian, L Xiong, Z Niu. On hamiltonicity of 3-connected claw-free graphs, submitted.
  • 10D B West. Introduction to Graph Theory, Prentice Hall, 2001, 2nd ed.

共引文献2

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部