期刊文献+

改进的二次1.5维谱估计在管道内检测中的应用 被引量:2

Application of Improved Secondary 1.5-D Spectrum Estimation in Pipeline Inner Inspection
下载PDF
导出
摘要 针对手动壁厚获取算法存在劳动强度大、效率低等缺点,而现有自动壁厚获取算法精度又不高、容易误判且适应性不强,提出了改进的二次1.5维谱估计自动壁厚获取算法:对管道超声A波信号做1.5维谱估计,根据壁厚上下限对数据截取与补零,并在此基础上再做一次1.5维谱估计,获取壁厚信息.实验表明:该算法产生的壁厚数据精度高,相对误差在3%以内. Aimed at the problem that the manual wall thickness acquisition algorithm has the disadvantages of large labor intensity, low efficiency, and so on, and the fact that the existing automatic wall thickness acquisition algorithm is not accurate and adaptable, the automatic wall thickness acquisition algorithm based on the improved secondary 1.5-D spectrum estimation was proposed. The pipeline ultrasonic A-wave signals were estimated by 1.5-D spectrum that were intercepted and filled zero by the upper and lower limit of the wall thickness. Then, the 1.5-D spectrum estimation was done again, and the wall thickness infor- mation was obtained. Experimental results show that the wall thickness data generated by this algorithm is more accurate and the relative error is within 3 %.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2015年第3期406-410,共5页 Journal of Shanghai Jiaotong University
基金 多通道超声波扫描检测技术开发课题(H12-054)资助
关键词 管道 内检测 二次1.5维谱估计 自动壁厚获取 pipeline inner inspection secondary 1. 5-D spectrum estimation automatic wail thickness acquisition
  • 相关文献

参考文献7

  • 1戴波,盛沙,唐建,张慧平.基于Burg最大熵法的管道腐蚀超声检测[J].数据采集与处理,2008,23(1):112-116. 被引量:5
  • 2Inoue H, Kishimoto K, Shibuya T. Experimental wavelet analysis of flexural waves in beams [J]. Experimental Mechanics, 1996, 36(3):212-217.
  • 3林红.小波变换在管道缺陷超声检测中的应用[J].装备制造技术,2009(8):130-132. 被引量:2
  • 4Bettayeb F, Rachedi T, Benbartaoui H. An improved automated ultrasonic NDE system by wavelet and neuron networks [J]. Ultrasonics, 2004,42(1-9):853-858.
  • 5Acciani G, Brunetti G, Fornarelli G. Angular and axial evaluation of superficial defects on nonaccessible pipes by wavelet transform and neural networkbased classification [J]. Ultrasonics, 2010, 50(1):13-25.
  • 6戴波,徐云,田小平,盛沙,马杰.基于SVM多分类器的管道内检测信号处理研究[J].杭州电子科技大学学报(自然科学版),2010,30(4):65-71. 被引量:3
  • 7Christopher J C. Burges. A tutorial on support vector machines for pattern recognition [J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167.

二级参考文献22

  • 1高珍,马金山,熊晓燕.齿轮故障诊断的小波分析方法[J].机械管理开发,2005,20(2):1-2. 被引量:1
  • 2罗丰,段沛沛,吴顺君.基于Burg算法的短序列谱估计研究[J].西安电子科技大学学报,2005,32(5):724-728. 被引量:30
  • 3Williamson George III, Bonn Mark W. Evaluation of ultrasonic intelligent pig performance: inherent technical problems as a pipeline inspection tool-part 1 [J]. Corrosion Prevention & Control, 1994, 41(6) : 148-152.
  • 4Burg J P. A new analysis technique for time series data[C]//Paper Presented at Advanced Study Institute on Signal. Processing, NATO. Enschede. Netherlands:[s. n. ]. 1968.
  • 5Bos A V D. Alternative interpretation of maximum entropy spectral analysis[J]. IEEE Trans on Information Theory, 1971, IT-17(4):493- 494.
  • 6Kay S M, Marple S L. Spectrum analysis a modern perspective [J]. Proc IEEE, 1981, 68(11): 1380- 1419.
  • 7Marple S L. A new autoregressive spectrum analysis algorithm[J]. IEEE Trans on Acoustics, Speech and Signal Processing, 1980, ASSP-28(4) :441-454.
  • 8Erin J. Bredensteiner,Kristin P. Bennett.Multicategory Classification by Support Vector Machines[J]. Computational Optimization and Applications . 1999 (1-3)
  • 9Vapnik VN.The Nature of Statistical Learning Theory. . 2000
  • 10Osuna E,Freund R,Girosi F.Training support vector machines: an application to face detection. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition . 1997

共引文献7

同被引文献11

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部