期刊文献+

抗差自适应Sage滤波及其在组合导航中的应用 被引量:11

Robust Adaptively Sage Filtering for Integrated Navigation System
下载PDF
导出
摘要 针对卡尔曼滤波需要精确已知状态数学模型及其统计特性的问题,提出一种抗差自适应Sage滤波算法。该方法以Sage滤波为基本框架,吸收了抗差估计和自适应滤波的优点,利用Sage滤波开窗法求得观测残差向量和新息(预测残差)向量的协方差阵,由抗差估计方法确定观测噪声协方差矩阵,利用自适应因子调整动力学模型噪声协方差矩阵,以控制观测异常和动力学模型噪声对导航精度的影响。将提出的算法应用到捷联惯性导航(SINS)/合成孔径雷达(SAR)组合导航系统中,并与Kalman滤波和Sage滤波进行比较分析,仿真结果表明,提出的新算法不但能有效地控制观测异常和动态模型异常对状态参数估值的影响,而且能够抵制状态扰动,提高组合导航系统的滤波精度。 In order to solve the questions of Kalman filtering requires precise known state mathematical model and its statistical properties,a robust adaptively Sage filtering algorithm is presented,which absorbs the merits of robust estimation and adaptive filtering based on Sage filtering.Sage filtering window method is used to obtain covariance matrixs of observation residual vector and innovation(prediction residual) vector,and observation noise covariance matrix is determined by the robust estimation.Dynamic model noise covariance matrix is adjusted by using adaptive factor to control the influence of observation residuals and predict residual for navigation accuracy.The proposed algorithm is applied to SINS/SAR integrated navigation system.Experimental results and their comparison demonstrate that the proposed method can not only effectively control influences of observation and dynamic model anomaly on state parameter valuation,but also effectively resist the state disturbances,and navigation accuracy is much higher than Kalman filtering and Sage filtering.
作者 高怡 高社生
出处 《测控技术》 CSCD 2015年第4期135-138,141,共5页 Measurement & Control Technology
基金 国家自然科学基金资助项目(61174193) 陕西省自然科学基金资助项目(N9YU0001)
关键词 KALMAN滤波 抗差估计 自适应滤波 Sage滤波 开窗估计 Kalman filtering robust estimation adaptive filtering Sage filtering windowing estimation
  • 相关文献

参考文献11

  • 1Sage A P, Husa G W. Adaptive filtering with unknown prior statistics[ C ]//Proceedings of Joint American Control Con- ference. 1969:760 - 769.
  • 2Methra R K. On the identification of variances and adaptive Kalman filtering [ J ]. IEEE Transactions on Automatic Con- trol, 1970,15(2) : 175 - 184.
  • 3CUI Xianqiang YANG Yuanxi.Adaptively robust filtering with classified adaptive factors[J].Progress in Natural Science:Materials International,2006,16(8):846-851. 被引量:27
  • 4YANG Yuanxi1 & WEN Yuanlan2 1. Xi’an Research Institute of Surveying and Mapping, Xi抋’an 710054, China,2. College of Aerospace and Material Engineering, National University of Defense Technology, Changsha 410073, China.Synthetically adaptive robust filtering for satellite orbit determination[J].Science China Earth Sciences,2004,47(7):585-592. 被引量:23
  • 5Gao S S, Zhong Y M, Li W. Robust adaptive filtering method for SINS/SAR integrated navigation system [ J ]. Aerospace Science and Technology, 2011,15 ( 6 ) :425 - 430.
  • 6Yang Y X, He H B, Xu G Z. Adaptively robust filtering for kinematic geodetic positioning [ J]. Journal of Geodesy,2001,75 (2/3) : 109 - 116.
  • 7Yang Y X, Cui X Q. Adaptively robust filter with multi adap- tive factors [ J ]. Survey Review, 2008,40 ( 309 ) :260 - 270.
  • 8杨元喜,徐天河.基于移动开窗法协方差估计和方差分量估计的自适应滤波[J].武汉大学学报(信息科学版),2003,28(6):714-718. 被引量:52
  • 9Yang Y X, Xu T H. An adaptive Kalman filter based on Sage windowing weights and variance components [ J ]. The Journal of Navigation,2003,56 ( 2 ) : 231 - 240.
  • 10徐天河,杨元喜.改进的Sage自适应滤波方法[J].测绘科学,2000,25(3):22-24. 被引量:50

二级参考文献37

  • 1YANG Yuanxi1 & WEN Yuanlan2 1. Xi’an Research Institute of Surveying and Mapping, Xi抋’an 710054, China,2. College of Aerospace and Material Engineering, National University of Defense Technology, Changsha 410073, China.Synthetically adaptive robust filtering for satellite orbit determination[J].Science China Earth Sciences,2004,47(7):585-592. 被引量:23
  • 2RENChao,OUJikun,YUANYunbin.Application of adaptive filtering by selecting the parameter weight factor in precise kinematic GPS positioning[J].Progress in Natural Science:Materials International,2005,15(1):41-46. 被引量:12
  • 3Bevington J E, Marttila C A. Precision aided inertial navigation using SAR and digital map data[C]//IEEE Position Location and Navigation Symposium. Las Vegas, NV, 20-23 Mar, 1990.
  • 4Gao She-sheng, Zhong Yong-min, Zhang Xueyuan, et al. Multi-sensor optimal data fusion for INS/GPS/SAR integrated navigation system[J]. Aerospace Science and Technology, 2009, 13(4-5): 232-237.
  • 5Shibata M. Error analysis of strapdown Inertial Navigation using quatemions[J]. Journal of Guidance, Control, and Dynamics, 1986, 9(4): 379-381.
  • 6Kong X. INS algorithm using quatemion model for low cost IMU[J]. Robotics and Autonomous Systems, 2004, 46(4): 221-246.
  • 7Kong X, Nebot E, Durrant-Whyte H. Development of a non-linear psi-angle model for large misalignment errors and its application in INS alignment and calibration[C]// Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI, USA, May 1999: 1430-1435.
  • 8Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proc. of the IEEE Aerospace and Electronic Systems, 2004, 92(3): 401-422.
  • 9Doucet A, Gordon N J, Krishnamurthy V. Particle filters for state estimation of jump Markov linear systems[J]. IEEE Transaction on Signal Procession, March 2001, 49(3): 613-624.
  • 10Yang Yuan-xi, Gao Wei-guang. An optimal adaptive Kalman filter[J]. Journal of Geodesy, 2006, 80(4): 177-183.

共引文献141

同被引文献67

引证文献11

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部