期刊文献+

GA-BP神经网络模型在地区工业技术创新能力评价中的应用 被引量:6

Application of BP Neural Network and Genetic Algorithm on Technological Innovation Capability Evaluation of Regional Enterprises
下载PDF
导出
摘要 针对当前技术创新能力评价方法大多建立在线性模型的基础上,且技术创新能力影响因素较多,可能存在多重共线性的缺陷,本文提出了遗传算法优化的BP神经网络模型。GA-BP神经网络模型在以下几方面做出了改进:①利用了神经网络强大的非线性关系映射能力,避免了传统线性模型的缺陷。②利用遗传算法对评价指标进行了降维,去除了多重共线性。③使用遗传算法从全局搜寻BP神经网络权值和阀值向量,优化了BP神经网络模型,避免了BP神经网络由于使用梯度下降算法,容易陷入局部最优解的缺陷。本文最后选取2008~2013年全国31个省市规模以上工业企业技术创新能力124条数据作为训练样本,31条数据作为测试样本,分别测试遗传算法优化的BP神经网络和未优化的BP神经网络,测试结果显示遗传算法优化的BP神经网络模型预测准确率高于未优化的BP神经网络模型。 At present , most technological innovation ability evaluation methods are established on the basis of the linear model , and the factors that affect the technological innovation capability are many , the multicollinearity may exist among variables . According to the above two reasons , the GA-BP neural network model was proposed in this paper . Genetic algorithm (GA) optimized the BP neural net-work model in the following aspects: ①neural network has the strong ability of dealing with nonlinear system . It avoided the disadvantages of the linear model . ②In order to remove the multicollinearity , the genetic algorithm was used to reduce evaluation index dimension . ③BP neural network used gradient descent algorithm that modified weights and thresholds , and it was easy to fall into local optimal solution . Genetic algorithm was introduced to search the BP neural network weights and thresholds in global scope . Finally , the technical innovation data of industrial enterprises above designated size in the 31 provinces , and cities were selected from year 2008 to 2013 , 124 of them are regard as training samples , others as testing samples . Empirical conclusion shows that forecast accuracy of GA -BP neural network is higher than BP neural network .
机构地区 石家庄经济学院
出处 《工业技术经济》 北大核心 2015年第4期98-104,共7页 Journal of Industrial Technological Economics
基金 国家自然科学基金资助项目(项目编号:71201110)
关键词 遗传算法 BP神经网络 技术创新能力 genetic algorithm BP neural network technological innovation capability
  • 相关文献

参考文献24

  • 1Guan JC, Yam RCM, Mok CK. A Study of the Rela- tionship Between Competitiveness and Technological Innovation Ca- pability Based on DEA Models [ J]. European Journal of Opera- tional Research, 2006, 170 (3) : 971 - 986.
  • 2牛泽东,张倩肖.中国装备制造业的技术创新效率[J].数量经济技术经济研究,2012,29(11):51-67. 被引量:115
  • 3Lu Iuan- Yuan, Chen Chie- Bein, Wang Chun- Hsien. Fuzzy Muhiattribute Analysis for Evaluating firm Techno- logical Innovation Capability [J]. International Journal of Tech- nology Management, 2007, 40 (1-3): 114- 130.
  • 4张少泽,张春瀛,孟庆洋.基于主成分分析法的我国区域技术创新能力综合评价[J].经济导刊,2013(3):90-91. 被引量:4
  • 5Berger Martin, Diez Javier Revilla. Do Firms Require an Efficient Innovation System to Develop Innovative Technological Capabilities? Empirical Evidence from Singapore, Malaysia and Thailand [ J]. International Journal of Technology Management, 2006, 36 (1-3): 267-285.
  • 6Wu Citing- Yah. Comparisons of Technological Innova- tion Capabilities in the Solar Photovoltaic Industries of Taiwan, China, and Korea [J]. Scientometrics, 2014, 98 (1): 429- 445.
  • 7Corsatea Teodora Diana. Technological Capabilities for Innovation Activities Across Europe: Evidence from Wind, Solar and Bioenergy Technologies [ J]. Renewable & Sustainable Ener- gy Reviews, 2014, 37:469 - 479.
  • 8Son Hyun- Chul, Kim Sunghong. Impacts of Innovation Success Factors on Technological Innovation Capability and Innovation Performance [ J]. Journal of the Korean Produc- tion and Operations Management Society, 2013, 24 (3): 62.
  • 9汪志波.基于AHP-灰色关联度模型的企业技术创新能力评价[J].统计与决策,2013,29(4):51-53. 被引量:23
  • 10陈全润,杨翠红.“类逐步回归”变量筛选法及其在农村居民收入预测中的应用[J].系统工程理论与实践,2008,28(11):16-22. 被引量:11

二级参考文献149

共引文献305

同被引文献77

引证文献6

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部