期刊文献+

基于C5.0与Apriori算法的森林生物量等级评价与因子关联分析 被引量:2

Evaluation on forest biomass grade and analyses on factor correlations by using C5.0 and Apriori algorithm
下载PDF
导出
摘要 针对生物量影响因子量化研究较少、方法单一及区域生物量评价不足且基于单个树种生物量模型进行评价时工作量过大的问题,以孟家岗林场的三类小班清查数据为基础,选取与生物量水平相关的11个因子,利用C5.0算法进行生物量决策树建模,并进一步利用Apriror算法进行生物量强影响因子的关联规则挖掘。结果表明:生物量决策树模型的分类预测精度为88.78%,生物量影响因子的量化结果分别为树高(0.348)、胸径(0.225)、林分类型(0.196)、龄级(0.162)、郁闭度(0.134)、坡度(0.096)、海拔(0.074)、坡向(0.065)、立地类型(0.052)和坡位(0.037);得到707条置信度在80%以上、支持度在10%以上的因子关联规则,揭示了生物量影响因子间的隐含关联关系。建立的生物量决策树模型能为快速的区域生物量预测和评价提供模型参考,建立的关联规则评估模型能够为以碳汇为目标的森林生产与经营提供客观评价指标。 Quantitative research on biomass impact factors was less, the used method was relatively single, the evaluation on regional biomass was inadequate and the biomass evaluating workload based on separated tree biomass models was overworked. Eleven factors related with biomass level were chosen based on the forest resources inventory data of Mengjiagang Forest Farm, the biomass decision tree model was built by using C5.0 algorithm, and further the correlation rules among factors which strongly influence the biomass level were developed by adopting Apriori algorithm. The results show that the classification accuracy of the biomass decision tree was 88.78%, the quantitative results of factors were as follows tree height(0.348), DBH(0.225), forest type(0.196), age class(0.162), canopy density(0.134), slope gradient(0.096), elevation(0.074), slope aspect(0.065), site type(0.052) and slope position(0.037); Seven hundred and seven correlation rules with confidence higher than 80% and support higher than 10% were obtained, which have revealed the hidden relations among the chosen factors. The conclusions come out that the biomass decision tree can provide a reference for quickly prediction and evaluation on regional biomass, the correlation rules can provide objective evaluation indexes for forest production and management under the goal of carbon sinks.
机构地区 东北林业大学
出处 《中南林业科技大学学报》 CAS CSCD 北大核心 2015年第3期1-6,共6页 Journal of Central South University of Forestry & Technology
基金 国家"十二五"农村领域科技计划课题(2012AA102003-2) 中央高校基本科研业务费专项资金项目(2572014AB22)
关键词 森林生物量评价 生物量影响因子 C5.0算法 APRIORI算法 关联分析 forest biomass evaluation biomass impact factor C5.0 algorithm Apriori algorithm correlation analysis
  • 相关文献

参考文献19

  • 1顾凯平,张坤,张丽霞.森林碳汇计量方法的研究[J].南京林业大学学报(自然科学版),2008,32(5):105-109. 被引量:90
  • 2罗云建,张小全,王效科,朱建华,侯振宏,张治军.森林生物量的估算方法及其研究进展[J].林业科学,2009,45(8):129-134. 被引量:163
  • 3Ervan Rultishauser, Yves Laumonier, James Halperin, et al. Generic allometric models including height best estimate forest biomass and carbon stocks in Indonesia [J]. Forest Ecology and Managemem,2013,307( 1):219-225.
  • 4Nyein Chan, Shinya Takeda, Reiji Suzuki, et aL Establishment of allometric models and estimation of biomass recovery of swidden cultivation fallows in mixed deciduous forests of the Bago Mountains, Myanmar [J]. Forest Ecology and Management,2013,304(15):427-436.
  • 5Mukti Ram Subedi, Ram E Sharma. Allometric biomass models for bark of Cinnamomum tamala in mid-hill of Nepal [J]. Biomass and Bioenergy,2012 (47):44-49.
  • 6王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究[J].应用生态学报,2001,12(1):13-16. 被引量:671
  • 7金钟跃,贾炜玮,刘微.落叶松人工林生物量模型研究[J].植物研究,2010,30(6):747-752. 被引量:17
  • 8王洪岩,王文杰,邱岭,苏冬雪,安静,郑广宇,祖元刚.兴安落叶松林生物量、地表枯落物量及土壤有机碳储量随林分生长的变化差异[J].生态学报,2012,32(3):833-843. 被引量:54
  • 9V Uri, M Varik, J Aosaar, et al. Biomass production and carbon sequestration in a fertile silver birch (Betulapendula Roth) forest chronosequence[J]. Forest Ecology and Management, 2013, (267): 117-126.
  • 10Gaia Vaglio Laurin,Qi Chen,Jeremy A. Lindsell, et al. Above ground biomass estimation in an African tropical forest with lidar and hyperspectral data [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014(89):49-58,.

二级参考文献224

共引文献1086

同被引文献27

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部