期刊文献+

递推SOM神经网络在短时交通流预测中的应用 被引量:3

Application of the Recursive SOM Neural Network in Short-term Traffic Flow Prediction
下载PDF
导出
摘要 针对短时交通流预测,提出递归自组织映射(SOM)神经网络方法。根据SOM神经网络的联想记忆技术,分别给出考虑了反馈的Rec SOM模型和能够利用结构化信息的SOMSD模型。递推SOM方法用全SOM作为重复神经元,用历史活动与当前信息的组合作为输入,通过训练神经元的权值及上下文信息学习时序动态。将递推SOM方法应用于预测某地区实测交通流数据,并与现有方法进行比较。试验结果表明,递推SOM方法能有效改善预测精度,在同等情况下优于其他方法。 For short-term traffic flow prediction, the method of recursive self-organizing map (SOM) neural network is proposed. On the basis of the associative memory technology of SOM neural network, the ResSOM model considering feedback and the SOMSD model capable using structured information are given respectively. The method of recursive SOM uses full SOM as the replicated neuron, and the eombination of historical activities and current information as the input; it learns time series dynamics by training the weight value of neuron and context information. The method of recursive SOM is applied in prediction of measured traffic flow data of an area, and comparison with existing method is conducted, the experimental results show that the method of recursive SOM effectively improves the prediction accuracy ; it is superior to other methods under the same circumstances.
出处 《自动化仪表》 CAS 2015年第4期1-5,9,共6页 Process Automation Instrumentation
基金 国家自然科学基金资助项目(编号:51467008) 甘肃省高等学校基本科研业务费专项资金项目(编号:620026)
关键词 短时交通流 智能交通 自组织映射 神经网络 递推 预测 Short-term traffic flow Intelligent transportation Self-organizing map Neural network Recursion Prediction
  • 相关文献

参考文献11

  • 1Li R H, Xu J M, Luo Q, et al. Real-time traffic flow forecasting based on wavelet neural network [ J ]. International Journal of Online Engineefing(iJOE) ,2013,9(3) :72-76.
  • 2梁秀霞,胡姗姗,李伟斌.非参数回归算法在短时交通流预测中的应用[J].自动化仪表,2012,33(4):21-23. 被引量:4
  • 3王娇,李军.最小最大概率回归机在短时交通流预测中的应用[J].公路交通科技,2014,31(2):121-127. 被引量:8
  • 4Jeong Y S,Byon Y J, Castro-Neto M M,et al. Supervised weighting- online learning algorithm for short-term traffic flow prediction [ J]. IEEE Transactions on Intelligent Transporation Systems,2013,14(4):1700-1707.
  • 5Haykin S S. Neural networks and learning machines [ M ]. New York : Prentice Hall ,2009.
  • 6Barreto G A. Time series prediction with the self-organizing map:a review [ J ]. Perspectives of Neural-symbolic Integration, Studies in Computational Intelligence ,2007,77 : 135-158.
  • 7Hammer B, Mieheli A, Sperduti A, et al. A general framework for unsupervised processing of structured data [ J ]. Neuro Computing,2004,57:3-35.
  • 8Blohm S. Data mining on sequences with recursive self-organizing maps[ D]. Bachelor thesis, University of Osnabrack ,2003.
  • 9Voegtlin T. Recursive self-organizing maps [ J ]. Neural Networks, 2002,15(8) :979-991.
  • 10Hagenbuchner M, Sperduti A, Tsoi A C. A self-organizing map for adaptive processing of structured data [ J ]. IEEE Transactions on Neural Networks ,2003,14(3 ) :491-505.

二级参考文献19

  • 1刘燕,章洵.组合预测模型在短时交通流预测中的应用研究[J].中国市场,2010(23):15-18. 被引量:1
  • 2王晓原,吴磊,张开旺,张敬磊.非参数小波算法的交通流预测方法[J].系统工程,2005,23(10):44-47. 被引量:14
  • 3张晓利,贺国光.考虑交通吸纳点的非参数回归组合型短时交通流预测方法[J].系统工程,2006,24(12):21-25. 被引量:9
  • 4HAYKIN S. Neural Network and Learning Machine [ M ]. 3rd ed. Canada: Prentice Hall, 2008 : 268 - 304.
  • 5STROHMANN T R, GRUDIC G Z. A Formulation for Minimax Probability Machine Regression [ C ] // Proceedings of 15th Advances in Neural Information Processing Systems, Cambridge : MIT Press, 2003 : 769 - 776.
  • 6MU Xiang-yang , ZHANG Tai-yi, ZHOU Ya-tong. A Novel Minimax Probability Machine for Network Traffic Prediction [ J ]. WSEAS Transactions on Business and Economics, 2007 , 9 (4): 135-139.
  • 7LANCKRIET G, GHAOUI L E, BHATrACHARYYA C, et al. Minimax Probability Machine [ C ] // Proceedings of 14th Advances in Neural Information Processing Systems. Cambridge : MIT Press, 2002 : 801 - 807.
  • 8MU Xiang-yang, ZHOU Ya-tong. A Novel Gussian Kernel Function for Minimax Probability Machine [ C ] // Proceedings of the 2009 WRI Global Congress on Intelligent Systems. Xiamen: IEEE Press, 2009:491 - 494.
  • 9SUN Jian-cheng. Modelling of Chaotic Time Series Using Minimax Probability Machine Regression [ C ] // 2009 WRI International Conference on Communications and Mobile Computing. Yunnan?: IEEE Press, 2009:321 - 324.
  • 10LIU Zun-xiong, XIE Xin, ZHANG De-yun. Predict Chaotic Time Series Using Minimax Probability Machine Regression [ J]. Information Technology Journal. 2006, 5 (3): 529- 533.

共引文献9

同被引文献100

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部