期刊文献+

改进ERTS平滑算法在位置跟踪中的应用研究

Application Research on the Improved ERTS Smoothing Algorithm in Position Tracking
下载PDF
导出
摘要 针对标准ERTS平滑算法在位置和姿态估计中计算复杂、效率低、精度不高等问题,提出了利用奇异值分解法改进ERTS平滑算法优化位置和姿态数据的新方法。对系统采集到的位置和姿态信息进行前向扩展卡尔曼滤波,降低系统噪声的初步影响;对滤波后的均方误差阵进行奇异值分解,并降低后向递推增益和预测值计算量,提高了预测精度,有效增强了系统的抗干扰性和稳定性。Turtlebot移动机器人平台的试验效果证明该算法在位置和姿态估计中的高效性和稳定性。 To overcome the disadvantages of standard ERTS smoothing algorithm in position and attitude estimation, e. g. , complexity, low efficiency, and poor precision, etc. , the new improved ERTS smoothing algorithm by adopting singularity valve decomposition is proposed for optimizing position and attitude data. After forward extended Karman filtering for the information of position and attitude collected in the system, the initial impact ofthe system noise is reduced; the singularity value decomposition is conducted for the MSE matrix after filtering, thus the backward recursion gain and the calculated amount of the predicted valueare decreased, and the prediction accuracy is improved ; as well as the anti-interference and stability of the system are effectively strengthened. The experimental result on Turtlebot mobile robot platform verifies the high effectiveness and stability of this algorithm in position and attitude estimation.
出处 《自动化仪表》 CAS 2015年第4期18-21,共4页 Process Automation Instrumentation
基金 四川省科技厅科技支撑计划项目(编号:2014RZ0049) 2014四川省科技支撑计划项目(编号:2014GZ0021)
关键词 扩展卡尔曼滤波 奇异值分解法 最优平滑算法 最优估计 位置跟踪 Extended Kalman filter Singular value decomposition Optimal smoothing algorithm Optimal estimation Position tracking
  • 相关文献

参考文献11

  • 1宫晓琳,张蓉,房建成.固定区间平滑算法及其在组合导航系统中的应用[J].中国惯性技术学报,2012,20(6):687-693. 被引量:15
  • 2Jetto L, Longhi S. Development and experimental validation of an adaptive extended kalman filter for the localization of mobile robots [ C ]//IEEE Transactions and Automation on Robotics,2009:143-150.
  • 3Zhu Jihua, Zheng Nanning, Yuan Zejian, et al. A SLAM algorithm based on the central difference kalman filter [ C ]//Intelligent Vehicles Symposium, IEEE, 2009 : 123-128.
  • 4Zhang Haitao,Rong Jian,Zhong Xiaochtm. The performance comparison and algorithm analysis of first/second order EKF and smoother for GPS/DR navigation [ C ]//11th IEEE International Conference on Communication Technology,2008:432--437.
  • 5Sarkka S,Viikari V,Huusko M,et al. Phase-based UI-IF RFID tracking with nonlinear kalman filtering and smoothing [ J ]. IEEE Sensors Journal,2012,12(5) :904-910.
  • 6Nassar S. Improving the inertial navigation system(INS) error model for INS and INS/DGPS applications [ D]. Alberta: University of Calgary, 2003.
  • 7秦永元.惯性导航[M].北京:科学出版社,2005:203-381.
  • 8Lei Xuan,Yang Jing. Application of RTS optimal smoothing algorithm in satellite attitude detemainafionr C~//2011 2nd International Conference on Intelligont Control and Information Proceedings ,2011:978-982.
  • 9Nassar S, Liu Hang, El-Sheimy N. Two-Filter smoothing for accurate ins-gps land-vehicle navigation in urban centers[ J]. IEEE Trans. on Vehicular Technology ,2010,59 (9) :4256-4267.
  • 10Razali S, Watanabe K, Maeyama S, et al. An unscented rauch-tung- striebelsmoother for a bearing only tracking problem [ C ]//2010 Int. Conf. on ICCAS ,2010 : 1281 - 1285.

二级参考文献27

  • 1杨艳娟,金志华,田蔚风,钱峰.R-T-S平滑算法在捷联惯性异航系统初始对准精度事后评估中的应用[J].上海交通大学学报,2004,38(10):1744-1747. 被引量:11
  • 2刘建业,袁信.GPS/INS组合导航系统的平滑滤波应用研究[J].航天控制,1995,13(4):36-42. 被引量:8
  • 3徐景硕,秦永元,顾冬晴.惯导系统动基座对准精度评估方法[J].火力与指挥控制,2005,30(4):20-23. 被引量:8
  • 4Merwe R,Wan E A. Sigma-point Kalman filters for nonlinear estimation and sensor-fusion: applications to integrated navigation[A].Providence,2004.
  • 5Meditch J S. A survey of data smoothing for linear and nonlinear dynamic systems[J].Automatica,1973.151-162.
  • 6Simon D. Optimal state estimation[M].New Jersey:John Wiley&Sons,Inc,2005.
  • 7Rauch H E,Tung F C,Striebel T. Maximum likelihood estimates of linear dynamic system[J].AIAA Journal,1965,(03):1445-1450.
  • 8Fraser D,Potter J. The optimum linear smoother as a combination of two optimum linear filters[J].IEEE Transactions on Automatic Control,1969,(04):387–390.
  • 9WANG Ya-feng,SUN Fu-chun,ZHANG You-an. Central difference particle filter applied to transfer alignment for SINS on missiles[J].IEEE Transactions on Aerospace and Electronic Systems,2012,(01):375-387.
  • 10Nassar S. Improving the inertial navigation system (INS) error model for INS and INS/DGPS applications[M].Calgary:Dep.of Geomatics Eng,2003.

共引文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部