期刊文献+

基于相关光谱和差分检测的气体传感系统 被引量:3

Gas Sensing System Based on Correlation Spectroscopy and Differential Technology
下载PDF
导出
摘要 基于相关光谱和差分检测技术提出了一种新型的光纤气体传感系统,实现了对微量气体的高灵敏度、高准确度、实时在线检测.首先对该系统进行了详尽的理论分析,然后在合理选择实验器件的基础上搭建了一个光纤气体传感系统,测量乙炔气体的体积分数.该系统不仅消除了光强波动及待测气体中杂质气体的干扰,而且也避免了周围环境中噪声和杂散光的影响.实验结果表明,系统的分辨力可达0.5‰,测量灵敏度为6.62μV,最大绝对误差为0.15‰,相对误差为7.5%,稳定性为2.27%,重复性误差为0.817%. Based on correlation spectroscopy and differential technology,a novel optical fiber gas sensing system was designed to realize high-sensitive,high-precision and real-time online detection of the trace gas. The theoretical basic of the system was analyzed in detail,and then appropriate devices for the sensing system were selected. Based on this,an optical fiber gas sensing system was constructed to measure the volume fraction of acetylene gas. The proposed system could not only eliminate the disturbances of light-intensity fluctuation and the contaminating gas in the measuring gas,but also avoid the influence of noise and ambient light in the surrounding environment. The experimental results showed that the system resolution could reach 0. 5‰, the measurement sensitivity was 6. 62 μV,the maximum absolue error was 0. 15‰,the relative error was 7. 5%,the system stability was 2. 27%,and the system repeatability error was 0. 817%.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第4期461-464,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(61203206 61273059) 中央高校基本科研业务费专项资金重点资助项目(N130104002 N130604006) 流程工业综合自动化国家重点实验室基础科研业务费资助项目(2013ZCX09)
关键词 气体传感 相关光谱 差分技术 浓度测量 乙炔气体 gas sensing correlation spectroscopy differential technology concentration measurement acetylene gas
  • 相关文献

参考文献10

  • 1Schurmann G,Schafer K,Jahn C,et al.The impact of NO○x,CO and VOC emissions on the air quality of Zurich airport[J].Atmospheric Environment,2007,41(1):103-118.
  • 2Zampetti E,Pantalei S,Muzyczuk A,et al.A high sensitive NO2 gas sensor based on PEDOT-PSS/TiO2 nanofibres[J].Sensors and Actuators B:Chemical,2013,176:390-398.
  • 3Yao B C,Wu Y,Cheng Y,et al.All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide[J].Sensors and Actuators B:Chemical,2014,194:142-148.
  • 4Melo L,Burton G,Davies B,et al.Highly sensitive coated long period grating sensor for CO2 detection at atmospheric pressure[J].Sensors and Actuators B:Chemical,2014,202:294-300.
  • 5刘琨,刘铁根,江俊峰,梁霄,贾大功,张红霞,汪曣,井文才,张以谟.基于波长调制技术的内腔式气体传感研究[J].中国激光,2011,38(1):144-149. 被引量:8
  • 6Frish M B,Wainner R T,Laderer M C,et al.Standoff and miniature chemical vapor detectors based on tunable diode laser absorption spectroscopy[J].IEEE Sensors Journal,2010,10:639-646.
  • 7Zhang Y N,Zhao Y,Bai L,et al.High-sensitivity optical fiber gas sensors based on novel optical devices[J].Instrumentation Science and Technology,2013,41:187-201.
  • 8Dakin J P,Gunning M J,Chambers P,et al.Detection of gases by correlation spectroscopy[J].Sensors and Actuators B:Chemical,2003,90:124-131.
  • 9Lou X T,Somesfalean G,Chen B,et al.Simultaneous detection of multiple-gas species by correlation spectroscopy using a multimode diode laser[J].Optics Letters,2010,35(11):1749-1751.
  • 10Wang B,Somesfalean G,Mei L,et al.Detection of gas concentration by correlation spectroscopy using a multi-wavelength fiber laser[J].Progress in Electromagnetics Research,2011,114:469-479.

二级参考文献19

  • 1刘琨 刘铁根 江俊峰等.一种混合式光纤物理和化学传感系统.中国激光,2009,36(2):299-305.
  • 2G. Stewart, K. Atherton, H. B. Yu et al.. An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements[J].Meas. Sci. Technol., 2001, 12(7): 843-849.
  • 3J. Marshall, G. Stewart, G. Whitenett. Design of a tunable L-band multi-wavelength laser system for application to gas spectroscopy[J].Meas. Sci. Technol., 2006, 17(5): 1023-1031.
  • 4M. Zhang, D. N. Wang, W. Jin et al.. Wavelength modulation technique for intra-cavity absorption gas sensor[J].IEEE Trans. Instrum. Meas., 2004, 53(1): 136-139.
  • 5李长治.红外傅里叶变换光谱及其在分析化学上的应用.分析化学,1981,9(1):112-117.
  • 6K. Chan, H. Ito, H. Inaba. Remote sensing system for near-infrared differential absorption of CH4 gas using low-loss optical fiber link[J].Appl. Opt., 1984, 23(19): 3415-3420.
  • 7K. Uehara, H. Tai. Remote detection of methane using a diode laser[J].Appl. Opt., 1992, 31(6): 809-814.
  • 8W. Jin, G. Stewart, B. Culshaw. Absorption measurement of methane gas with a broadband light source and interferometric signal processing[J].Opt. Lett., 1993, 18(16): 1364-1366.
  • 9P. B. David, S. Z. Daniel, P. D. Arthur. High-resolution spectroscopy using an acousto-optic tunable filter and a fiber-optic Fabry-Perot interferometer[J].Appl. Spectrosc., 1996, 50(4): 498-503.
  • 10Y. Zhang, M. Zhang, W. Jin. Multi-point, fiber-optic gas detection with intra-cavity spectroscopy[J].Opt. Commun., 2003, 220(4-6): 361-364.

共引文献7

同被引文献49

引证文献3

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部