期刊文献+

面向社交网络中多背景的信任评估模型 被引量:5

MCTE:a Trust Evaluation Model for Multiple Context in Social Networks
下载PDF
导出
摘要 针对信任由背景敏感性导致的在社交网络中难以有效评估用户间接信任值的问题,提出了一种面向多交互背景的间接信任评估模型(multiple-context trust evaluation,MCTE)。该模型利用相关性概念,通过对各背景下网络结构和用户信任关系的综合分析,建立覆盖在信任网络之上的相关性网络,进而利用交互背景的相关性计算跨背景用户的间接信任值。模型避免了多背景以及疏散网络中间接用户信任路径难以寻求,以及信任衰减对评估的影响,有针对性地为用户组建立相关网络,保证了预测的准确性及合理性。对真实社交网络的实验结果表明,MCTE模型不仅可以计算单一背景下用户的间接信任值,更适用于多交互背景下用户信任值的预测。与已有模型相比,评估准确度有较大的提高。 A novel multiple-context trust evaluation model,named MCTE,is proposed for social networks to deal with the problem that it is difficult to effectively evaluate indirect trust value between users due to the context sensitivity of trust.A relevance network on top of trust networks is established by taking advantages of the relevant concepts,and through a comprehensive analysis of network structures and user's trust relationship in each context.Then user's indirect trust across the context is calculated by using the relevance of context.The Model avoids the effect of the trust attenuation on evaluation and the problem that the trust path between indirect users is difficult to find in multiple context and sparse networks,so that relevance networks of user groups can be built,and the evaluation accuracy and reasonableness are ensured.Experimental results on real social networks shows that the MCTE model can compute the indirect trust value in one single context,and is suitable for the prediction of user's indirect trust in multiple context.Comparison with an existing model shows that the evaluation accuracy of the proposed model improves a lot.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第4期73-77,103,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61174146 61221063)
关键词 社交网络 信任评估 多背景 social networks trust evaluation multiple context
  • 相关文献

参考文献16

  • 1SHERCHAN W, NEPAL S, PARIS C. A survey of trust in social networks [J]. ACM Computing Sur- veys, 2013, 45(4): 47-79.
  • 2BARNES J A. Class and committees in a Norwegian island parish [J]. Human Relations, 1954, 7(1): 39- 58.
  • 3张赛,徐恪,李海涛.微博类社交网络中信息传播的测量与分析[J].西安交通大学学报,2013,47(2):124-130. 被引量:68
  • 4GROSS R, ACQUISTI A. Information revelation and privacy in online social networks [C] /// Proceedings of the ACM Workshop on Privacy in the Electronic Socie- ty. New York, USA: ACM, 2005: 71-80.
  • 5MOLM L D, TAKAHASHI N, PETERSON G. Risk and trust in social exchange: an experimental test of a classical proposition [J]. American Journal of Sociolo- gy, 2000, 105(5): 1396-1427.
  • 6ZAPPEN J P, HARRISON T M, WATSON D. A new paradigm for designing e-government: Web 2.0 and experience design [C] /// Proceedings of the Inter- national Conference on Digital Government Research. Berlin, Germany: Springer, 2008: 17-26.
  • 7ABDUL-RAHMAN A, HAILES S. Supporting trust in virtual communities [C] // Proceedings of the 33rd Hawaii International Conference on System Sciences. Piscataway, NJ, USA: IEEE, 2000: 1-9.
  • 8DWYER C, HILTZ S R, PASSERINI K. Trust and privacy concern within social networking sites: a com- parison of Facebook and Myspaee [C]//Proceedings of the 13th Americas Conference on Information Sys- tems. Atlanta, GA, USA: Association Information Systems, 2007: 1725-1735.
  • 9ANDERSEN R, BORGS C, CHAYES J, et al. Trust- based recommendation systems: an axiomatic approach [C] // Proceedings of the 17th International Conference on Intelligent User Interfaces. New York, USA: ACM, 2008: 199-208.
  • 10O'DONOVAN J, SMYTH B. Trust in recommender systems [C] // Proceedings of the 10th International Conference on Intelligent User Interfaces. New York, USA: ACM, 2005: 167-174.

二级参考文献11

  • 1MISLOVE A,MARCON M,GUMMADI K P. Measurement and analysis of online social networks[A].New York,USA:ACM,2007.29-42.
  • 2SCHNEIDER F,FELDMANN A,KRISHNAMURTHY B. Understanding online social network usage from a network perspective[A].New York,USA:ACM,2009.35-48.
  • 3ADAR E,ADAMIC L A. Tracking information epidemics in blogspace[A].Washington,DC,USA:IEEE Computer Society,2005.207-214.
  • 4GOMEZ-RODRIGUEZ M,LESKOVEC J,KRAUSE A. Inferring networks of diffusion and influence[A].New York,USA:ACM,2010.1019-1028.
  • 5GRUHL D,GUHA R,LIBEN-NOWELL D. Information diffusion through blogspace[A].New York,USA:ACM,2004.491-501.
  • 6LIBEN-NOWELL D,KLEINBERG J. Tracing information flow on a global scale using Internet chainletter data[J].Proceedings of the National Academy of Sciences(USA),2008,(12):4633-4638.doi:10.1073/pnas.0708471105.
  • 7GOYAL A,BONCHI F,LAKSHMANAN L V. Learning influence probabilities in social networks[A].New York,USA:ACM,2010.241-250.
  • 8LERMAN K,GHOSH R. Information contagion:an empirical study of the spread of news on Digg and Twitter social networks[A].Washington,DC,USA:AAAI,2010.66-75.
  • 9BAKSHY E,HOFMAN J M,MASON W A. Everyone's an influencer:quantifying influence on twitter[A].New York,USA:ACM,2011.65-74.
  • 10新浪科技有限公司.2011年第四季度及全年财报[EB/OL]http:∥tech.sina.com.cn/i/2012-02-28/05296776965.shtml,2012.

共引文献67

同被引文献30

引证文献5

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部