期刊文献+

超声压紧对低能电子束分层固化复合材料质量的影响 被引量:2

Effect of Ultrasonic Compaction on Quality of Composite Stepwise Cured by Low-Energy Electron Beam
下载PDF
导出
摘要 针对低能电子束分层固化复合材料层间孔隙缺陷导致层间剪切强度较低的问题,设计了超声压紧装置。该装置通过压头将超声波作用于预浸带铺层上,配合低能电子束固化系统制作复合材料层合板,并研究了超声压紧参数对复合材料质量的影响。实验结果表明,超声振动在压紧过程中产生的机械效应和热效应可有效减少孔隙,增强纤维与树脂的界面结合性能,提高层间剪切强度,从而改善复合材料试件质量。其中,振幅对复合材料孔隙率及层间剪切强度影响最大,当超声振幅为7.5μm时,试件致密性明显改善,孔隙率降至1.80%,层间剪切强度提高11.7%;压紧力影响相对较小,当压紧力从100 N到220 N变化时,层间剪切强度只有3.64%的提高,孔隙率在2.62%以下。过大的振幅与压紧力都会引起压紧过程中预浸带温度升高,导致树脂固化度提高,渗透性变差,孔隙率增加,使复合材料质量降低。 To improve the interlaminar shear strength(ILSS)of composite cured by low-energy electronic beam,the ultrasonic compaction mechanism is designed to fabricate laminate with lowenergy electronic beam curing system,which transmits the energy of ultrasonic to the prepreg layers.The effects of ultrasonic compaction parameters on voids and ILSS are analyzed.Experiments show that the mechanical effect and heating effect are produced in ultrasonic compacting process,which eliminate interlaminar voids and enhance bonding strength of fibers and resin,then improve the quality of the composite.When the laminate layers are compacted with 7.5μm ultrasonic amplitude,the laminate's ILSS is 11.7% higher than that of the laminate fabricated without ultrasonic compaction,and the void content is reduced to 1.80%.When the compacting force changes from 100 Nto 220N,ILLS is only improved by 3.64% and the void content gets under 2.62%.Larger amplitude and compacting force will induce increasing resin cure degree due to the rising temperature,resulting in lower resin permeability and ILSS.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第4期134-139,共6页 Journal of Xi'an Jiaotong University
基金 国家重大科技专项资金资助项目(2014ZX04001091) 国家"863计划"资助项目(2012AA040209) 教育部新世纪优秀人才支持计划资助项目(NCET-11-0419)
关键词 低能电子束 超声压紧 复合材料 孔隙 层间剪切强度 low-energy electron beam ultrasonic compaction composite voids ILSS
  • 相关文献

参考文献15

  • 1BRONDSTED P, LII.HOLT H, LYSTRUP A. Com- posite materials for wind power turbine blades [J]. Annual Review of Materials Research, 2005, 35: 505- 538.
  • 2MOURITZ A, GEI.I.ERT E, BURCHILL P, et al. Review of advanced composite structures for naval ships and submarines [J]. Composite Structures, 2001, 53(1): 21-42.
  • 3BER[JKA A J, EI3ERLE C. Electron beam curing of composites in North America [J]. Radiation Physics and Chemistry, 2002, 63(3): 551-556.
  • 4PITARRESI G, ALESSI S, TUMINO D, et al. Inter- laminar fracture toughness behavior of electron-beam cured carbon-fiber reinforced epoxy-resin composites [J]. Polymer Composites, 2014, 35(8): 1529-1542.
  • 5VAUTARD F, OZCAN S, POLAND L, et al. Influ ence of thermal history on the mechanical properties of carbon fiber-acrylate composites cured by electronbeam and thermal processes I-J-I. Composites: Part A Applied Science and Manufacturing, 2013 (45) : 162- 172.
  • 6LOPATA V J, FIDGEON E. EB processing for repair of commercial aircraft: a status report [C]//Proceed- ings of the 46th International SAMPE Symposium and Exhibition. Long Beach, USA: SAMPE, 2001: 1-13.
  • 7GOODMAN D L, GIUSEPPE R P. Curing and bond- ing of composites using electron beam processing: chapter 11 [M]// The Handbook of Polymer Blends and Composites. Shropshire, UK: Rapra Technology Ltd. , 2002: 459-495.
  • 8包建文,徐松华,李晔,陈祥宝.电子束固化M40J/EB99-1复合材料性能研究[J].材料工程,2003,31(5):19-22. 被引量:3
  • 9刘玉文,张志谦,黄玉东,包建文.电子束固化复合材料界面[J].复合材料学报,2002,19(3):16-20. 被引量:4
  • 10BYKANOV A, GOODAMN D L, BYRNE C A. Au- tomated tape placement with in-situ electron beam cure: process parameters optimization [C]//47th In- ternational SAMPE Symposium and Exhibition. Covi- na, USA: SAMPE, 2002: 902-918.

二级参考文献40

  • 1陈烈民.碳纤维复合材料在卫星上的应用趋势[J].宇航材料工艺,1993,23(4):5-7. 被引量:12
  • 2张和善.低成本先进复合材料技术的发展研究.航空信息研究报告[M].,1998,477.7-9.
  • 3Christopher J, et al.In: 42nd International SAMPE Symposium[C].1997.477.
  • 4Daniel L Goodman, et al. In: 44th International SAMPE Symposium[C].1999.269.
  • 5YI Xiaosu. Technology and developments of advanced composites[M]. Beijing: Publishing Company of National Defense Industry, 2006.
  • 6HAY J, GARA P. Recent developments in thermoset curing method [J]. Aerospace Engineering, 2006, 220: 187-194.
  • 7FERABOLI P , MASINI A. Development of carbon/epoxy structural components for a high performance vehicle[J]. Composites(Part B), 2004, 35: 323-330.
  • 8CHEN Saojie. Composies and large civil aircraft[J]. New Material Industry, 2008(1): 31-35.
  • 9DEO D B, STARNES D H, HOLZWARTH J C. Low-cost composite materials and structures for aircraft applications[C/CD]//The RTO AVT Specialists Meeting on Low Cost Composite Structures, Norway, May 7-11, 2001.
  • 10GRIFFITHS B. Boeing sets pace for composite usage in large civil aircraft[J]. High-performance Composites, 2005(5): 13-20.

共引文献12

同被引文献101

引证文献2

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部