期刊文献+

Bell多项式在变系数广义浅水波方程中的应用

The Application of Bell Polynomial to the Variable-coefficients Generalized Shallow Water Wave Equation
下载PDF
导出
摘要 本文利用Bell多项式方法将变系数广义浅水波方程转化成双线性形式,利用Bell多项式结合Hirota方法得出了变系数广义浅水波方程的单孤子解、双孤子解的精确表达形式,并借助计算机绘出其图形,展示了多孤子之间的相互作用. By means of Bell polynomials,the variable-coefficients generalized Shallow water wave equation is bilinearized.And by combining Bell polynomial method with Hirota method,both the single soliton solutions of the variable-coefficients generalized Shallow water wave equation and the double soliton solutions are obtained.The diagram drawn with the help of computer showed the interaction between solitons.
出处 《北方工业大学学报》 2015年第1期61-65,共5页 Journal of North China University of Technology
关键词 Bell多项式方法 HIROTA方法 浅水波方程 变系数 Bell polynomial Hirota method the shallow water wave equation variable-coefficients
  • 相关文献

参考文献12

  • 1Clarkson P A, Mansfield E L. Symmetry reduc- tions and exact solutions of shallow water wave e- quations[J]. Acta Appl. Math. , 1995,39 : 245-276.
  • 2沈守枫.(1+1)维广义的浅水波方程的变量分离解和孤子激发模式[J].物理学报,2006,55(3):1016-1022. 被引量:15
  • 3Gardner L R, Gardner G A, Dogan A. A least- squares finite element scheme for RLW equation [J]. Commun. Numer. Math.,1996 ,12:795 - 804.
  • 4Benjamin T B, Bona J L, Mahony J J. Model equa- tion for long waves in nonlinear dispersive syste- rms[J]. Phil. Trans. R. Soc. Lond. Ser., 1972, 272:47-78.
  • 5孙福伟,蔡九鲜.变系数(2+1)维破裂孤立子方程的N-孤立子解及其应用[J].北方工业大学学报,2012,24(1):49-54. 被引量:4
  • 6Gao Y T, Tian B. Generalized tanh method with symbolic computation and generalized shallow water wave equation [J]. Comput. Math. Appl. ,1997,33:115-118.
  • 7Tian B , Gao Y T. Soliton-like solutions for a (2 q-1 )-dimensional generalization of the shallow water wave equation [J]. Chaos. SolitonsFract. , 1996,7 : 1497-1499.
  • 8Mei J Q, Zhang H Q. Some soliton-like and peri- odic solutions for a (2 + 1) dimensional generali- zation of shallow water wave equation[J]. Acta Math. Sci. Set. A. , 2005, 25:784-788.
  • 9Ablowitz M J, Clarkson P A. Soliton, Nonlinear Evolution Equations and Inverse Scattering [M]. NewYork : Cambridge University Press, 1991.
  • 10Gilson C, Hamlert F, Nimmo J, et al. On the comlinatories of the hirota D-Operators[J]. Psoc. R. Soc. hond. A. , 1996, 452..223-234.

二级参考文献56

  • 1沈守枫.(1+1)维广义的浅水波方程的变量分离解和孤子激发模式[J].物理学报,2006,55(3):1016-1022. 被引量:15
  • 2Ablowitz M J, Clarkson P A. Soliton, Nonlinear Evolution Equations and Inverse Scattering[M]. NewYork:Cambridge University Press, 1991.
  • 3Lou S Y, Lu J Z. Special solutions from the variable separation approach: the Davey-Stewartson equation[J]. Phys. A: Math. Gen. ,1996, 29: 4209.
  • 4広田良吾.孤子理论中的直接方法[M].北京:清华大学出版社,2008.
  • 5Wei G M, Gao Y T. Painleve analysis, auto-Backlund Transformation and new analytic solutions for a generalized variable coefficient Kortewege-de Vries equation [J]. Eur. Phys, 2006, J. B53 : 343-350.
  • 6S. Roy. Choudhury. Integrability characteristics of two-dimensional generalizations of NLS type equations [J]. Mathematical Physics, 2003, D: 5733-5750.
  • 7Zabusky N J, Kruskal M D 1965 Phys. Rev. Lett. 15 240.
  • 8陈陆君,粱昌洪.1997孤立于理论及其应用—光孤子理论及光孤子通信.西安电子科技大学出版社.
  • 9Russell J S 1844 "Report on waves", Report of the 14th meeting of British Association for the Advancement of Science, John Murray,London, 311.
  • 10Korteweg D J, de Vries G 1895 On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Phil. Mag. 39 422.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部