期刊文献+

采用稀疏特征选择的红外运动目标跟踪方法 被引量:2

Infrared moving target tracking based on sparse feature selection
下载PDF
导出
摘要 复杂场景下的红外运动目标对比度低且缺乏细节信息,难以实现稳定持续跟踪。分析了典型红外运动目标的特性,提出一种稀疏编码与特征选择的改进跟踪算法。采用Logistic回归模型,通过对正负样本的监督学习,计算得到最佳权重特征矢量,并将原始特征模板和粒子采样对象均向该特征矢量投影,削弱了背景成分对运动目标跟踪的影响并降低了运算量。在模板更新策略上采用了每帧更新的方法以适应运动目标的机动性。文中给出的方法与其他两种经典方法的实验比较,证明了本方法对运动目标跟踪的有效性。 The infrared moving target in complex background has the characteristics of low contrast and few details,and it is difficult to realize a stable and continuous tracking. After analyzing the characteristics of infrared moving target,an improved tracking algorithm based on sparse encoding and feature selection is proposed. Using Logistic regression model and the supervised learning of the positive and negative samples,the optimal weight vector was calculated. Then the original feature templates and particle samples were projected to this vector by using a diagonal matrix,which can reduce the effect of cluttered background on moving target tracking and reduce the calculated amount. The update of each frame is used to adapt the moving target maneuverability in template updating strategy. Experimental results show that this algorithm is effective for infrared moving target tracking compared with IVT algorithm and L1 algorithm.
出处 《激光与红外》 CAS CSCD 北大核心 2015年第4期446-451,共6页 Laser & Infrared
基金 装备预研项目 国家863计划重大项目资助
关键词 红外运动目标跟踪 稀疏表示 特征选择 LOGISTIC回归模型 infrared moving target tracking sparse representation feature selection Logistic regression model
  • 相关文献

参考文献8

  • 1彭晨,陈钱,钱惟贤,徐富元.复杂地面场景下的红外运动目标跟踪[J].红外与激光工程,2013,42(6):1410-1414. 被引量:4
  • 2唐峥远,赵佳佳,杨杰,刘尔琦,周越.基于稀疏表示模型的红外目标跟踪算法[J].红外与激光工程,2012,41(5):1389-1395. 被引量:16
  • 3David A R, Jongwoo L,Ruei-Sung L,et al. Incrementallearning for robust visual tracking [ J ]. International Jour-nal of Computer Vision,2008 ,77( 1 - 3) : 125 - 141.
  • 4Boris B, YANG M H,Serge B. Visual tracking with onlinemultiple instance learning[ C]. CVPR,2009.
  • 5Xue M,Ling H B. Robust visual tracking using LI mini-mization [C ]. Proc of IEEE International Conference onComputer Vision ,2009 : 1436 - 1443.
  • 6John W,Julien M, Guillermo S, et. al. Sparse representa-tion for computer vision and pattern Recognition [ C]. Pro-ceedings of the IEEE,2010,98(6) :1031 - 1044.
  • 7Zhong W,Lu H C,Yang M H. Robust Object tracking viasparsity-based collaborative Model[ C]. International Con-ference on Computer Vision and Pattern Recognition,2012:1838 -1845.
  • 8Liu J,Chen J H, Ye J P. Large-scale sparse logistic re-gression [ C ]. The Fifteenth ACM SIGKDD InternationalConference on Knowledge Discovery and DataMining, 2009.

二级参考文献5

共引文献17

同被引文献17

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部