期刊文献+

一类有理递归序列的简单性态

A Simple State of Rational Recurrence Sequence
下载PDF
导出
摘要 在Alaa E.Hamza和A.Morsy Alaa等有关有理递归序列xn+1=α+xn-1xkn,n=0,1,2,…的稳定性研究的基础上,对时滞为k的情形做了进一步讨论,研究了有理递归序列xn+1=α+xn-kxmn的全局性和有界性,得到了关于该递归序列稳定性的几个判定定理。 On the base of the study of Alaa E.Hamza and A.Morsy Alaa about the stability of the recursive sequence xn + 1= α +xn- 1xkn, n = 0,1,2,…, the general case that delay is k was investigated, the global stability and boundness of the recursive sequence xn + 1= α +xn- kxmn,n = 0,1,2,…was studied, and some judgment theorems of recursive sequence stability were obtained.
出处 《海军航空工程学院学报》 2015年第2期178-180,共3页 Journal of Naval Aeronautical and Astronautical University
关键词 有理递归序列 有界性 局部渐近稳定 rational recurrence sequence boundness locally asymptotically stable
  • 相关文献

参考文献8

  • 1ABU-SARIS R, DEVAULT R. Global stability of yn+1=A+(yn/yn-k) [J]. Applied Mathematics Letters, 2003,16:173-178.
  • 2SALEH M, ALOQEILI M. On the rational difference equation yn+1=A+(yn/yn-k) [J]. Journal of Computation- al and Applied Mathematics, 2006,177: 189-193.
  • 3KULENOVI' C M R S, LADAS G. Dynamics of second order rational difference equations[M]. Boca Raton: Chapman & Hall, 2002: 23-75.
  • 4ZENG X Y, SHI B, ZHANG D C. Stability of solutions for the recursive sequence[J]. Journal of Computational and Applied Mathematics, 2005,176: 283-291.
  • 5曾晓云,胡正高,时宝.关于递归序列xn+1=(α-βxn-1)/(γ+g(xn))的稳定性[J].海军航空工程学院学报,2010,25(1):109-112. 被引量:1
  • 6ABOUTALEB M T, EI-SAYED M A, HAMZA A E. Sta- bility of the recursive sequence[J]. Journal of Mathemat- ics Analysis and Applications, 2001,261 : 126-133.
  • 7ALAA E HAMZA, MORSY A. On the recursive sequence xn + 1 =α + xn-1/xn^k [J]. Applied Mathematics Letters, 2009,22: 91-95.
  • 8KOCIC V L, LADAS G. Global behavior of nonlinear dif- ference equations of higher order with applications[M]. London: Kluwe Academic Publishers, 1993:11-37.

二级参考文献8

  • 1EL-OWAIDY H M, AHMED A M, ELSADY Z. Global attractively of the recursive sequence xn+1=α-βxn-1/γ+xn[J].Appl. Math. Comp, 2004,151 (3):827-833.
  • 2KOCIC V L, G.LADAS I, RODRIGUES W. On rational recursive sequence[J]. J. Math. Annal. Appl, 1993,173 (11):127-157.
  • 3KOCIC V L, LADAS G. Global behavior of nonlinear difference of higher order with applications[M]. Kluuwer Academic Publishers, Dordrecht, 1993.
  • 4MONA T ABOUTALEB, EL-SAYED M A, ALAA E HAMZA. Stability of the recursive sequence xn+1=α-βxn-1/γ+xn[J]. J. Math. Anal. Appl,2001,261(1):126-133.
  • 5YAN XING-XUE, Li WAN-TONG. Global attractivity in the recursive sequencexn+1=α-βxn-1/γ+xn[J]. Appl. Math.Comp, 2003,138(2-3):415-423.
  • 6EL-OWAIDY H M, AHMED A M, MOUSA M S. On the rec.ursive sequences xn+1=-αxn-1/β±xn[J]. Appl. Math.Comp, 2003,145(2-3):747-753.
  • 7YAN XING-XUE, LI WAN-TONG. Global attractively for a class of higer order nonlinear difference equation[J]. Appl. Math. Comp, 2004,169(2):533- 546.
  • 8YAN XING-XUE, LI WAN-TONG. Global attractivity in a rational recursive sequence[J]. Appl. Math. Comp, 2003,145(1):1-12.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部