期刊文献+

带集中质量复合材料层合屈曲梁参激振动的研究 被引量:1

RESEARCH ON THE PARAMETRICALLY EXCITED VIBRATIONS OF A COMPOSITE LAMINATED BUCKLED BEAM WITH A LUMPED MASS
下载PDF
导出
摘要 基于欧拉梁理论,运用Reissner变分原理,导出了轴向周期激励下一端固定一端夹支,带集中质量的复合材料层合屈曲梁的非线性动力学控制方程.利用模态截断,对系统非线性偏微分控制方程进行Galerkin积分,并用四阶龙格-库塔法数值研究了主共振下梁随激励幅值变化的分岔图,讨论了集中质量大小和位置对系统一阶频率和倍周期分叉的影响,结果表明,外激励幅值及集中质量的大小和位置会对带集中质量的屈曲梁的动力学行为产生重要影响. Based on the Euler-Bernoulli beam theory and Reissner principle, the equations of the non-linear re- sponse of a composite laminated buckled beam with clamped ends and a lumped mass to an axial periodic excita- tion were obtained. By using the single-mode approximation and Galerkin's method, the differential equation was derived, and the bifurcation diagram of displacement varying with the excitation amplitude was obtained by using the fourth-order Runga-Kutta algorithm. Moreover, the effect of size and locations of the concentrated mass on the natural frequency and period-doubling bifurcation was discussed. The numerical simulation indicates that the excitation amplitudes and the sizes and locations of the concentrated mass have significant impact on the non-linear response of the buckled beam.
出处 《动力学与控制学报》 2015年第2期101-105,共5页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(11172051 51108047)~~
关键词 屈曲梁 集中质量 参激振动 倍周期分叉 混沌 buckled beam, lumped mass, parametrically excited vibrations, period-doubling, bifurcations, chaos
  • 相关文献

参考文献3

二级参考文献37

  • 1张清杰,刘土光,郑际嘉,李世其.结构动力屈曲研究进展[J].力学进展,1993,23(4):530-539. 被引量:16
  • 2董兴建,孟光.压电悬臂梁的动力学建模与主动控制[J].振动与冲击,2005,24(6):54-56. 被引量:20
  • 3陈予恕,季进臣.非线性振动系统动力学行为的实验研究[J].力学进展,1996,26(4):473-481. 被引量:9
  • 4Woinowsky-Krieger, S.: The effect of an axial force on the vibration of hinged bars. ASME J. Appl. Mech. 38, 35-36 (1950).
  • 5Srinivasan, A.H.: Large amplitude-free oscillations of beams and plates. AIAA J. 3, 1951-1953 (1965).
  • 6Wrenn, B.G., Mayers, J.: Nonlinear beam vibration with variable axial boundary restraint. AIAA J. 8, 1718-1720 (1970).
  • 7Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Willey, New York (1979).
  • 8Nayfeh, A.H., Nayfeh, J.F., Mook, D.T.: On methods for continuous systems with quadratic and cubic nonlinearities. Nonlinear Dyn. 3, 145-162 (1979).
  • 9Pakdemirli, M., Nayfeh, A.H.: Nonlinear vibration of beam-springmass system. J. Vib. Acoust. 166, 433438 (1994).
  • 10Pakdemirli, M.: Vibrations of continuous systems with a general operator notation suitable for perturbative calculations. J. Sound Vib. 246(5), 841-851 (2001 ).

共引文献8

同被引文献16

  • 1Burgreen D. Free vibration of a pin-ended column with constant distance between pin ends. Journal of Applied Me- chanics, 1951,18(2) :135 - 139.
  • 2Abou-Rayan A M, Nayfeh A H, Mook D T. Nonlinear re- sponse of a parametrically excited buckled beam. Nonlin- ear Dynamics, 1993,4 ( 5 ) :499 - 525.
  • 3Emam S A, Nayfeh A H. On the nonlinear dynamics of a buckled beam subjected to a primary-resonance excitation. Nonlinear Dynamics, 2004,35 ( 1 ) : 1 - 17.
  • 4Emam S A , Nayfeh A H. Nonlinear responses of buckled beams to subharmonic-resonance excitations. Nonlinear Dynamics, 2004,35 ( 2 ) : 105 - 122.
  • 5Pirbodaghi T, Ahmadian M T, Fesanghary M. On the homo- topy analysis method for non-linear vibration of beams. Me- chanics Research Communications, 2009,36(2):143 - 148.
  • 6Nayfeh A H, Waiter Lacarbonara, Char-Ming Chin. Non- linear normal modes of buckled beams: three-to-One and one-to-One internal resonances. Nonlinear Dynamics, 1999,18(3) :253 -273.
  • 7Emam S A, Nayfeh A H. Non-linear response of buckled beams to 1 : 1 and 3 : 1 internal resonances. International Journal of Nonlinear Mechanics, 2013,52(6) : 12 - 25.
  • 8Kreider W, Nayfeh, A H. Experimental investigation of single-mode responses in a fixed-fixed buckled beam. Non- linear Dynamics, 1998,15(2) :155 - 177.
  • 9Nagai K, Maruyama S, Sakaimoto K, Yamaguchia T. Ex- periments on chaotic vibrations of a post-buckled beam withan axial elastic constraint. Journal of Sound and Vi- bration, 2007,304 (3-5) : 541 - 555.
  • 10Mahmoodi S N, Jalili N, Khadem S E. An experimental investigation of nonlinear vibration and frequency response analysis of cantilever viscoelastic beams. Journal of Sound and Vibration, 2008,311 ( 3-5 ) : 1409 - 1419.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部