期刊文献+

GA-BP神经网络的钛合金微弧氧化膜层厚度预测模型的建立 被引量:6

Establishment of GA-BP neural network model for prediction of the thickness of micro-arc oxidation coating on titanium alloy
下载PDF
导出
摘要 利用正交试验法获得的TC4钛合金微弧氧化实验数据建立了基于4-11-1(即4个输入神经元,11个隐含层节点,1个输出神经元)结构的BP神经网络预测膜层厚度的模型,并引入遗传算法(GA)对其权值和阈值进行优化。以微弧氧化工艺参数中的电流密度、脉冲频率、占空比和氧化时间作为网络的输入向量,氧化膜层厚度作为网络的输出向量,对比和分析了BP与GA-BP模型的预测结果。与BP网络模型相比,GA-BP网络模型稳定性能较好,并能高精度预测膜层的厚度,GA-BP网络模型预测值的平均误差为0.015,最大误差仅为0.036,而BP模型预测结果的平均误差为0.064,最大误差为0.099。 A model based on BP(back propagation) neural network with 4-11-1(i.e. 4 input neurons, 11 hidden layer nodes, and 1 output neuron) structure for prediction of the thickness of micro-arc oxidation coating on TC4 titanium alloy was established using the data obtained by orthogonal test. The weights and thresholds were optimized by genetic algorithm(GA). The prediction results of the BP and GA-BP models were analyzed and compared using current density, frequency, duty cycle, and oxidation time as input vectors and the thickness of oxidation coating as output vector. Compared to BP model, the GA-BP model possesses better stability and predicts the coating thickness with higher precision. The average and maximum prediction errors are 0.015 and 0.036 respectively for GA-BP model, and 0.064 and 0.099 respectively for BP model.
出处 《电镀与涂饰》 CAS CSCD 北大核心 2015年第7期381-385,共5页 Electroplating & Finishing
基金 国家自然科学基金(51005140) 山东省自然科学基金(ZR2010EQ037) 山东理工大学青年教师发展支持计划经费资助
关键词 钛合金 微弧氧化 膜厚 预测 神经网络 遗传算法 titanium alloy micro-arc oxidation film thickness prediction neural network genetic algorithm
  • 相关文献

参考文献13

  • 1王丽,付文,陈砺.等离子体电解氧化技术及机理研究进展[J].电镀与涂饰,2012,31(4):48-52. 被引量:10
  • 2YEROKHIN A L, NIE X, LEYLAND A, et al. Plasma electrolysis for surface engineering [J]. Surface and Coatings Technology, 1999, 122 (2/3): 73-93.
  • 3王凤彪,狄士春.医用钛合金微弧氧化膜的制备及其生物相容性研究[J].电镀与涂饰,2011,30(6):25-28. 被引量:7
  • 4钟涛生,蒋百灵,李均明.微弧氧化技术的特点、应用前景及其研究方向[J].电镀与涂饰,2005,24(6):47-50. 被引量:42
  • 5李克杰,李全安.合金微弧氧化技术研究及应用进展[J].稀有金属材料与工程,2007,36(A03):199-203. 被引量:33
  • 6TSUNEKAWA S, AOKI Y, HABAZAKI H. Two-step plasma electrolytic oxidation of Ti-15V-3Al—3Cr-3Sn for wear-resistant and adhesive coating [J].Surface and Coatings Technology, 2011, 205 (19): 4732-4740.
  • 7KHORASANIAN M, DEHGHAN A, SHARIAT M H, et al. Microstructure and wear resistance of oxide coatings on Ti-6A1-4V produced by plasma electrolyticoxidation in an inexpensive electrolyte [J]. Surface and Coatings Technology, 2011, 206 (6): 1495-1502.
  • 8CHEN M H, LI W B,SHEN M L, et al. Glass-ceramic coatings on titanium alloys for high temperature oxidation protection: Oxidation kinetics andmicrostructure [J]. Corrosion Science, 2013, 74: 178-186.
  • 9TAN G P, WANG D F, LI Q. Vehicle interior sound quality prediction based on back propagation neural network [J]. Procedia Environmental Sciences, 2011,11 (Part A): 471-477.
  • 10BUFFA G, FRATINI L, MICARI F. Mechanical and microstructural properties prediction by artificial neural networks in FSW processes of dual phase titaniumalloys [J]. Journal of Manufacturing Processes, 2012,14 (3): 289-296.

二级参考文献83

共引文献108

同被引文献83

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部