期刊文献+

Red-Light-Dependent Interaction of phyB with SPA1 Promotes COP1-SPA1 Dissociation and Photomorphogenic Development in Arabidopsis 被引量:23

Red-Light-Dependent Interaction of phyB with SPA1 Promotes COP1-SPA1 Dissociation and Photomorphogenic Development in Arabidopsis
原文传递
导出
摘要 Arabidopsis phytochromes (phyA-phyE) are photoreceptors dedicated to sensing red/far-red light. Phyto- chromes promote photomorphogenic developments upon light irradiation via a signaling pathway that involves rapid degradation of PIFs (PHYTOCHROME INTERACTING FACTORS) and suppression of COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) nuclear accumulation, through physical interactions with PIFs and COP1, respectively. Both phyA and phyB, the two best characterized phytochromes, regulate plant photomorphogenesis predominantly under far-red light and red light, respectively. It has been demonstrated that SPA1 (SUPPRESSOR OF PHYTOCHROME A 1) associates with COP1 to promote COP1 activity and suppress photomorphogenesis. Here, we report that the mechanism underlying phyB- promoted photomorphogenesis in red light involves direct physical and functional interactions between red-light-activated phyB and SPA1. We found that SPA1 acts genetically downstream of PHYB to repress photomorphogenesis in red light. Protein interaction studies in both yeast and Arabidopsis demonstrated that the photoactivated phyB represses the association of SPA1 with COP1, which is mediated, at least in part, through red-light-dependent interaction of phyB with SPA1. Moreover, we show that phyA physically interacts with SPA1 in a Pfr-form-dependent manner, and that SPA1 acts downstream of PHYA to regulate photomorphogenesis in far-red light. This study provides a genetic and biochemical model of how photo- activated phyB represses the activity of COP1-SPA1 complex through direct interaction with SPA1 to promote photomorphogenesis in red light. Arabidopsis phytochromes (phyA-phyE) are photoreceptors dedicated to sensing red/far-red light. Phyto- chromes promote photomorphogenic developments upon light irradiation via a signaling pathway that involves rapid degradation of PIFs (PHYTOCHROME INTERACTING FACTORS) and suppression of COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1) nuclear accumulation, through physical interactions with PIFs and COP1, respectively. Both phyA and phyB, the two best characterized phytochromes, regulate plant photomorphogenesis predominantly under far-red light and red light, respectively. It has been demonstrated that SPA1 (SUPPRESSOR OF PHYTOCHROME A 1) associates with COP1 to promote COP1 activity and suppress photomorphogenesis. Here, we report that the mechanism underlying phyB- promoted photomorphogenesis in red light involves direct physical and functional interactions between red-light-activated phyB and SPA1. We found that SPA1 acts genetically downstream of PHYB to repress photomorphogenesis in red light. Protein interaction studies in both yeast and Arabidopsis demonstrated that the photoactivated phyB represses the association of SPA1 with COP1, which is mediated, at least in part, through red-light-dependent interaction of phyB with SPA1. Moreover, we show that phyA physically interacts with SPA1 in a Pfr-form-dependent manner, and that SPA1 acts downstream of PHYA to regulate photomorphogenesis in far-red light. This study provides a genetic and biochemical model of how photo- activated phyB represses the activity of COP1-SPA1 complex through direct interaction with SPA1 to promote photomorphogenesis in red light.
出处 《Molecular Plant》 SCIE CAS CSCD 2015年第3期467-478,共12页 分子植物(英文版)
关键词 PHYB PHOTOACTIVATION SPA1 COP1 PHOTOMORPHOGENESIS PHYA phyB, photoactivation, SPA1, COP1, photomorphogenesis, phyA
  • 相关文献

参考文献2

二级参考文献3

共引文献27

同被引文献121

引证文献23

二级引证文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部