期刊文献+

区间三角模糊软集及其动态决策方法 被引量:11

Interval-valued triangular fuzzy soft set and its method of dynamic decision making
下载PDF
导出
摘要 为完善模糊软集理论,提出区间三角模糊软集的概念,并讨论其相关运算及性质。建立基于区间三角模糊软集的动态决策模型,其中,时间权重采用指数衰减方法进行确定,利用集成的思想定义了区间三角模糊软集算术加权平均算子,将不同时刻的区间三角模糊软集集成为综合区间三角模糊软集。给出不同对象选择值和决策值的求解公式,根据决策值大小来实现最优决策。最后总结出方法的具体步骤,并通过实例说明具体应用。 The concept of interval-valued triangular fuzzy soft set is presented and the relative operations and properties are discussed for improving the fuzzy soft theory. A dynamic decision making model is established based on the definition of interval-valued triangular fuzzy soft set, in which the determination of period weights is by the use of exponential decay method, and the arithmetic weighted average operator of interval-valued trian- gular fuzzy soft set has been given by the aggregating thought, thereby aggregating different time series inter- val-valued triangular fuzzy soft sets into a collective interval valued triangular fuzzy soft set. The formulas of different objects selection and decision-making value have been given, therefore the optimal decision-making is achieved according to the size of the decision values. Finally, the steps of the proposed method have been con- cluded, and some examples are given to explain the application of the method.
作者 陈孝国 杜红
出处 《系统工程与电子技术》 EI CSCD 北大核心 2015年第5期1111-1115,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(51105135) 黑龙江省自然科学基金(A201015)资助课题
关键词 区间三角模糊软集 集成 动态决策 模糊软矩阵 interval-valued triangular fuzzy soft set aggregating dynamic decision making fuzzy soft matrix
  • 相关文献

参考文献21

  • 1Gorzalczany M B. A method of inference in approximate rea- soning based on interval-valued fuzzy sets[J]. Fuzzy Sets and Systems, 1987,21(1) :1 - 17.
  • 2Zadeh L A. Fuzzy sets[J]. Information and Control, 1965,8 (3): 338 - 353.
  • 3Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11: 341 - 356.
  • 4Molodtsov D. Soft set theory-first results[J]. Computers and Mathematics with Applications, 1999, 37(4) : 19 - 31.
  • 5Maji P K, Biswas R, Roy A R. Fuzzy soft sets[J]. Journalof Fuzzy Mathematics, 2001, 9(3) : 589 - 602.
  • 6Maji P K, Biswas R, Roy A R. Intuitionistic fuzzy soft sets[J]. Journal of Fuzzy Mathematics, 2001, 9(3) : 677 - 692.
  • 7Yang X B, Lin T Y, Yang J Y, et al. Combination of interval- valued fuzzy set and soft set[J]. Computers and Mathematics with Applications, 2009, 58(3): 521- 527.
  • 8Jiang Y C, Tang Y, Chen Q M, et al. Interval-valued intui- tionistic fuzzy soft sets and their properties[J]. Computers and Mathematics with Applications, 2010,60(3) : 906 - 918.
  • 9Ali M L A note on soft sets, rough soft sets and fuzzy soft sets[J].Applied Soft Computing, 2011,11 (4) : 3329 - 3332.
  • 10Maji P K, Roy A R, Biswas R. An application of soft sets in a decision making problem[J]. Computers and Mathematics with Applications, 2002, 44(8) :1077 - 1083.

二级参考文献25

  • 1徐泽水.不确定多属性决策方法及应用[M].北京:清华大学出版社.2005.
  • 2Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353.
  • 3Atanassov K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96.
  • 4Pawlak Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11: 341-356.
  • 5缪柏其, 胡太忠. 概率论教程[M]. 2版. 合肥: 中国科学技术大学出版社, 2009.
  • 6Molodtsov D. Soft set theory--First results[J]. Computers and Mathematics with Applications, 1999, 37: 19-31.
  • 7Maji P K, Biswas R, Roy A R. Soft set theory[J]. Computers and Mathematics with Applications, 2003, 45: 555-562.
  • 8Yang C F. A note on ''Soft set theory" [Comput. Math. Appl. 45(4-5)(2003) 555-562][J]. Computers and Mathematics with Applications, 2008, 56: 1899-1900.
  • 9Ikfan Ali M. A note on soft sets, rough soft sets and fuzzy soft sets[J]. Applied Soft Computing, 2011, 11: 3329-3332.
  • 10Feng F, Li C X, Davvaz B, et al. Soft sets combined with fuzzy sets and rough sets: A tentative approach[J]. Soft Computing, 2010, 14: 899-911.

共引文献30

同被引文献77

引证文献11

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部