期刊文献+

基于元学习的作战行动效能评估标准数据生成方法研究

下载PDF
导出
摘要 部队作战行动效能评估难度大的主要原因是缺乏科学可靠的评估标准数据。为了选择适当的算法生成评估标准数据,建立了基于元学习的评估标准数据生成方法总体框架,并提出集成近似排序树方法来建立作战行动数据集元特征与算法性能排序的映射关系形成元知识,从而辅助指挥决策人员选择适当的算法生成评估标准数据。
出处 《军事运筹与系统工程》 2015年第1期34-39,共6页 Military Operations Research and Systems Engineering
基金 国家自然科学基金资助项目(70971137)
分类号 E911 [军事]
  • 相关文献

参考文献14

  • 1WOLPERT D H, MACREADY W G. No free lunch theorems for search [ J]. IEEE Transactions on Evolutionary Computation, 1997,1 (1) :67 -82.
  • 2BRAZDIL P, SOARES C, COSTA J. Ranking learning algo- rithms : using IBL and meta - learning on accuracy and time re- suits [ J ]. Machine Learning, 2003,50 ( 3 ) :251 - 277.
  • 3SONG Q B, WANG G T, WANG C. Automatic recommendation of classification algorithms based on data set characteristics [ J ]. Pattern Recognition, 2012,45 ( 7 ) : 2672 - 2689.
  • 4KANDA J, SOARES C, HRUSCHKA E, et al. A meta - learn- ing approach to selectmeta - heuristics for the traveling salesman problem using MLP - Based label ranking [ C ]//Lecture Notes in Computer Science, Neural Information Processing. Heidel- berg: Springer, 2012(7665) :488 -495.
  • 5LEITE R, BRAZDIL P. Active testing strategy to predict the best classification algorithm viasampling and metaleaming[ C ]// Proc of the 19th European Conference on Artificial Intelligence. Lisbon, 2010:309 - 314.
  • 6KOTYHOFF L, GENT I P, MIGUEL I. An evaluation of ma-chine learning in algorithm selectionfor search problems [ J ]. AI Communications, 2012,25 (3) :257 - 270.
  • 7KALOUSIS A, THEOHARIS T. NOEMON : Design, implemen- tationand performance results of an intelligent assistant forclassi- tier selection [ J]. Intelligent Data Analysis, 1999 (3) :319 - 337.
  • 8PFAHRINGER B, BENSUSAN H, GARRIER C G. Meta- learning by landmarking various learning algorithms [ C ]. Proe of the 17th IntConf on Machine Learning. San Francisco: Mor- gan Kaufmann, 2000:743 - 750.
  • 9BENSUSAN H, GIRAUD CARRIER C. Discovering task neigh- bourhoods through landmark learningperformances [ C ]///Proe of the 4th European Conf on Principles and Practice of Knowledge Discovery in Databases. Berlin: Springer- Verlag, 2000:325 - 330.
  • 10PENG Y H, FLACH P A, SOARES C, et al. Improved data- setcharacterization for meta - learning [ C ]//Proc of the 5th In- tConf on Discovery Science. LubeckGermany, 2002:141 - 152.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部