摘要
设D=∏r+i(n∈Z),ri≡5 mod 6(1≤i≤n)为彼此不相同的奇素数,p≡1 mod 6为奇素数,关于丢番i=1图方程x3±1=2pDy2的初等解法至今仍未解决.运用Pell方程的解的性质、同余式、平方剩余、递归序列等讨论了丢番图方程x3±1=2pDy2的整数解的情况.
Let D = ∏r+i(n∈Z), ri = 5 mod 6 ( 1≤i ≤ n) be different odd primes and p ≡ 1 mod 6 be odd prime. The primary solution of the Diophantine equation x3 ± 1 = 2pDy2 still was unresolved. The integer solutions of the Diophantine equation x3 ± 1 = 2pDy2 were discussed with the help of some proper- ties of the solutions to Pell equation, congruence, quadratic remainder and recursive sequence.
出处
《郑州大学学报(理学版)》
CAS
北大核心
2015年第1期42-45,共4页
Journal of Zhengzhou University:Natural Science Edition
基金
云南省教育厅科研项目
编号2014Y462
江苏省教育科学"十二五"规划课题
编号D201301083
喀什师范学院校级课题
编号(14)2513
关键词
丢番图方程
奇素数
同余
平方剩余
递归序列
整数解
Diophantine equation
odd prime
congruence
quadratic remainder
recursive sequence
integer solution