期刊文献+

非参数变换和改进动态规划的立体匹配算法 被引量:12

A stereo matching algorithm based on Census transform and improved dynamic programming
下载PDF
导出
摘要 针对传统稠密立体匹配方法在非纹理区、深度不连续处和遮挡处存在错误匹配率过高的问题,提出一种基于非参数变换和改进动态规划相结合的立体匹配算法.采用稀疏非参数变换相关方法计算初始局部匹配代价,并利用行列双向约束动态规划算法对匹配代价进行全局优化,在获取初始视差后分别对原始图像每一像素点进行可信性与纹理性检测,最后利用视差平面拟合结果代替非纹理与非可信区域像素点的原始视差,得到稠密视差图.实验表明,该算法具有较高的鲁棒性与匹配精度,尤其在处理图像的非纹理区、深度不连续处和遮挡处,可获得精确的匹配结果. A stereo matching algorithm based on Census transform and improved dynamic programming is proposed to the problems of traditional dense stereo matching methods, which have high false matching rate in the textureless areas, depth discontinuities and occlusion. The initial local matching cost is calculated by sparse Census transform correlation, and the raw cost is also optimized by a dynamic programming method by involvoing bidirectional constraints of row and column simultaneously. Meanwhile, the confidence and texture of each pixel are measured for reference image. Finally, the disparities of non-confident or textureless pixels are estimated by fitting parameters of a plane model for the corresponding segment, and the dense disparity map was obtained as well. Experiment results demonstrate that the proposed algorithm achieves high matching accuracy and robustness, especially in the textureless areas, depth discontinuities, and occlusion as well.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2015年第3期60-65,共6页 Journal of Harbin Institute of Technology
基金 国家自然科学基金(61100004) 黑龙江省自然科学基金(F201320)
关键词 立体匹配 Census变换 动态规划 双向约束 视觉导航 stereo matching census transform dynamic programming bidirectional constraint vision navigation
  • 相关文献

参考文献12

  • 1BROWN M Z, BURSCHKA D, HAGER G D. Advances in computational stereo [ J 1- IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(8) : 993-1008.
  • 2HUMENBERGER M, ENGELKE T, KUBINGER W. A census-based stereo vision algorithm using modified semi-global matching and plane fitting to improve matching quality [ C J//Proceeding of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops ( CVPRW ). San Francisco, CA: IEEE, 2010: 77-84.
  • 3KUMAR S, KUMAR S, SUKAVANAM N, et al. Human visual system and segment-based disparity estimation : J ]. AEU-International Journal of Electronics and Communications, 2013, 67(5): 372-381.
  • 4SCHARSTEIN D, SZELISKI R. A taxonomy and evaluation of dense two-frame stereo correspondence algorithms [ J l- International Journal of Computer Vision, 2002, 47(1/3) : 7-42.
  • 5RHEMANN C, HOSNI A, BLEYER M, et at. Fast cost- volume filtering for visual correspondence and beyond [C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Washington, DC: IEEE Computer Society, 2011 : 3017-3024.
  • 6NIERADKA G,BUTKIEWICZ B S.Features stereo matching based on Fuzzy logic[ C ]//Proceedings of the Joint 2009 International Fuzzy Systems Association World Congress and 2009 European Society of Fuzzy Logic and Technology Conference. Lisbon, Portudal, 2009: 1188-1193.
  • 7ULUSOY I, HANCOCK E R. A statistical approach to sparse multi-scale phase-based stereo [ J ]. Pattern Recognition, 2007, 40(9) : 2504-2520.
  • 8ZABIH R, WOODFILL J. Non-parametric Local Transforms for Computing Visual Correspondence : M ]. Springer, Berlin-Heidelberg: Computer Vision-ECCV' 94, 1994: 151-158.
  • 9FIFE W S, ARCHIBALD J K. Improved census transfomts for resource-optimized stereo vision [ J ]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23 ( 1 ) : 60-73.
  • 10TORR P H S, CRIMINISI A. Dense stereo using pivoted dynamic programming [ J ]. Image and Vision Computing, 2004, 22( 30): "795-806.

同被引文献59

引证文献12

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部