期刊文献+

一种抛物面镜摄像机的配置及标定方法

A NEW METHOD FOR CONFIGURATION AND CALIBRATION OF PARABOLIC CAMERA
原文传递
导出
摘要 着重解决如何将抛物面镜与普通CCD摄像机配置成满足中心投影约束的全景摄像机及其参数标定问题.首先通过数值仿真实验给出全景摄像机的配置与拟合误差之间的关系图,从而确定最佳参数配置范围.接着,研究了利用空间平面的图像信息标定抛物面镜摄像机的算法.在摄像机内参数已知情况下,借助平面诱导的单应矩阵将标定问题转化为多项式特征值问题,从而获得待标定参数的解析解,避开复杂的数值计算,达到快速标定参数的目的.结果表明,该算法最少只需5对图像匹配点便可以实现问题求解.最后,通过数值仿真实验和真实图像实验验证算法的有效性和鲁棒性. This paper mainly solves the problems of how to efficiently configure and calibrate a parabolic camera composed by one parabolic mirror and one traditional CCD camera, which satisfies the constraint of central projection. Firstly, the relation- ship between various configuration parameters and its corresponding system errors is tested and depicted using numerical simulation experiments, with which the range for best configuration parameters is obtained. Then, a new algorithm is suggested for calibrating the parabolic camera with the image information of a spatial plane. With the known intrinsic parameters, the calibration problem is formulated into a fourth order polynomial eigenvalue problem via the plane-induced Homographic matrix. An analytic solution is obtained to avoid the complicated numerical computation, and hence rapid calibration is achieved. The results Mso show that five or more pairs of corresponding image points are sufficient for solving this problem. Finally, numeri- cal simulation and real data experiments are performed to validate the accuracy and robustness of the proposed algorithm, and satisfactory results are obtained in those experiments.
出处 《系统科学与数学》 CSCD 北大核心 2015年第1期31-41,共11页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(60802087) 国家电子商务信息处理国际联合研究中心项目(2013B01035)资助课题
关键词 抛物面镜摄像机 中心投影约束 单应矩阵 多项式特征值问题. Parabolic camera, central projection constraint, homographic matrixpolynomial eigenvalue problem.
  • 相关文献

参考文献13

  • 1Nayar S K. Catadioptric omnidirectional camera. Computer Vision and Pattern Recognition, 1997. Proceedings, 1997 IEEE Computer Society Conference on. IEEE, 1997, 482-488.
  • 2Baker S, Nayar S K. A theory of single-viewpoint catadioptric image formation. International Journal of Computer Vision, 1999, 35(2): 175-196.
  • 3Geyer C, Daniilidis K. Catadioptric projective geometry. International Journal of Computer Vision, 2001, 45(3): 223-243.
  • 4Barreto J P. A unifying geometric representation for central projection systems. Computer Vision and Image Understanding, 2006, 103(3): 208-217.
  • 5Ying X, Hu Z. Can we consider central catadioptric cameras and fisheye cameras within a unified imaging model. Computer Vision-ECCV 2004. Springer Berlin Heidelberg, 2004, 442-455.
  • 6Duan H, Wu Y. A calibration method for paracatadioptric camera from sphere images. Pattern Recognition Letters, 2012, 33(6): 677-684.
  • 7段慧仙,李光耀,李超,谭云兰.一种抛物反射折射圆像的拟合方法[J].计算机学报,2012,35(10):2063-2071. 被引量:3
  • 8Wu F, Duan F, Hu Z, et al. A new linear algorithm for calibrating central catadioptric cameras. Pattern Recognition, 2008, 41(10): 3166-3172.
  • 9Kanatani K. Calibration of ultrawide fisheye lens cameras by eigenvalue minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(4): 813-822.
  • 10邓小明,吴福朝,段福庆,吴毅红,胡占义.基于一维标定物的反射折射摄像机标定方法[J].计算机学报,2007,30(5):737-747. 被引量:10

二级参考文献16

  • 1DENG Xiao-Ming WU Fu-Chao WU Yi-Hong.An Easy Calibration Method for Central Catadioptric Cameras[J].自动化学报,2007,33(8):801-808. 被引量:12
  • 2Ying X, Hu Z, Catadioptric camera calibration using geometric invariants. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(10): 1260-1271.
  • 3Kang S B. Catadioptric self-calibration//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hilton Head Island, SC, USA, 2000, 1: 201-207.
  • 4Wu Y, Hu Z. Geometric invariants and applications under eatadioptrie camera model//Proeeedings of the 10th International Conference on Computer Vision. Beijing, China, 2005, 1: 1547-1554.
  • 5Zhang Z. Camera calibration with one-dimensional objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(7): 892-899.
  • 6Fitzgibbon A, Pilu M, Fisher R B. Direct least square fitting of ellipses. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5): 476-480.
  • 7Barreto J P, Araujo H. Paraeatadioptrie camera calibration using lines//Proceedings of the 8th International Conference on Computer Vision. Nice, France, 2003, 2:1359-1365.
  • 8Hartley R, Zisserman A. Multiple View Geometry in Computer Vision. Cambridge: Cambridge University Press, 2000.
  • 9Geyer C, Daniilidis K. Catadioptrie projective geometry. International Journal of Computer Vision, 2001, 45(3) : 223-243.
  • 10Semple J, Kneebone G. Algebraic Projective Geometry. Oxford: Oxford University Press, 1952.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部