期刊文献+

Zebiak-Cane模式中条件非线性最优扰动对ENSO春季预报障碍的影响 被引量:1

The impact of conditional nonlinear optimal perturbation on the ENSO spring predictability barrier in the Zebiak-Cane model
下载PDF
导出
摘要 使用Zebiak-Cane模式和条件非线性最优扰动(CNOP)方法,研究初始误差和参数误差共同作用对ENSO春季预报障碍现象的影响。选取模式中的8个El Ni?o事件,包括4次强事件和4次弱事件,每个El Ni?o事件又分别从8个不同的起始时间做1 a的预报,这样一共64个预报实验。对每个实验分别计算CNOP误差(初始误差和参数误差同时存在时的最优误差),通过分析误差增长,发现CNOP误差引起的1 a后的预报误差随着初始预报时间的不同有较大差异,并且不同强度的El Ni?o事件也会影响CNOP误差的发展,增长位相中强事件的预报误差要比弱事件的预报误差大一些;而衰减位相中恰恰相反,弱事件的预报误差要比强事件的预报误差要大一些;同时也发现高频El Ni?o事件对误差增长率的影响较大。本结论有助于提高Zebiak-Cane模式预报ENSO的技巧。 In this paper, the impact of both the initial and parameter errors on the spring predictability barrier (SPB) of the Zebiak-Cane (ZC) model was investigated. We chose eight El Ni?o events in the ZC model, including four strong events and four weak ones, each with eight initial months for a total of 64 cases. Using the conditional nonlinear optimal perturbation (CNOP) approach, we calculated the CNOP errors (optimal errors when both initial and parameter errors were considered) for each event. By analyzing the error growth, we found that both the initial month and the intensity of the El Ni?o events can affect the one-year prediction errors of the CNOP errors. During the growing phase, the prediction errors of the strong events are larger than those of the weak events, while for the decaying phase, the weak events have larger prediction errors. In addition, the high-frequency events have a more noticeable impact on the seasonal error growth. This conclusion may help us improve the ENSO prediction using the ZC model.
作者 于亮
出处 《海洋科学》 CAS CSCD 北大核心 2015年第1期104-109,共6页 Marine Sciences
基金 国家自然科学基金项目(41230420) 青岛市基础研究计划项目(11-1-4-95-jch)
关键词 Zebiak-Cane模式 条件非线性最优扰动 ENSO春季预报障碍 the Zebiak-Cane model conditional nonlinear optimal perturbation ENSO spring predictability barrier
  • 相关文献

参考文献2

二级参考文献15

  • 1穆穆,王家城.Nonlinear fastest growing perturbation and the first kind of predictability[J].Science China Earth Sciences,2001,44(12):1128-1139. 被引量:28
  • 2DUAN WanSuo,MU Mu.Conditional nonlinear optimal perturbation: Applications to stability, sensitivity, and predictability[J].Science China Earth Sciences,2009,52(7):883-906. 被引量:33
  • 3P. J. Webster.The annual cycle and the predictability of the tropical coupled ocean-atmosphere system[J].Meteorology and Atmospheric Physics (-).1995(1-2)
  • 4Dong C. Liu,Jorge Nocedal.On the limited memory BFGS method for large scale optimization[J].Mathematical Programming (-).1989(1-3)
  • 5Webster,P.J.The annual cycle and the predictability of the tropical coupled ocean-atmosphere system,Meteorol[].AtmosPhys.1995
  • 6Roger,M.S.EliTziperman,Instability of theChaoticENSO:The growth-phase predictability barrier,J[].Atmospheric Science.2001
  • 7WANG Bin,ZHENG Fang.Chaotic oscillations ofthe tropical climate:A dynamic system theory forENSO[].Journal of the Atmospheric Sciences.1996
  • 8LiuD.C.,Nocedal,J.On the memoryBFGS method for large scale optimization[].Mathematical Programming.1989
  • 9Webster,P.J,Yang,S.Monsoon andENSO:Selectively interactive systems[].QJRMeteorolSoc.1992
  • 10Lorenz,E.N.A study of the predictability of a28-variable atmospheric model[].Tellus.1965

共引文献75

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部