期刊文献+

界面聚合法制备PANI/g-C_3N_4复合催化剂及其热稳定性和可见光催化性能 被引量:8

PANI/g-C_3N_4 Composites Synthesized by Interfacial Polymerization and Their Thermal Stability and Photocatalytic Activity
下载PDF
导出
摘要 利用界面聚合法,成功将聚苯胺(PANI)纳米棒生长在石墨型氮化碳(g-C3N4)片层上,制备了PANI/gC3N4复合光催化剂.采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)、扫描电镜(SEM)、紫外-可见(UV-Vis)光谱、热重分析(TGA)和电化学工作站表征手段考察样品的结构、形貌及性能,以可见光催化降解亚甲基蓝为模型考察样品的可见光催化活性.实验结果表明,在复合材料中的g-C3N4能很好地分散成层状,并在层间与PANI纳米棒形成复合物,这种特殊的复合结构不仅利于片状g-C3N4对PANI链段运动的限制及对其降解产物的物理屏蔽,从而可以提高复合材料的热稳定性,而且具有优越的可见光催化性能. Polyaniline (PANI) nanorods grown on layered graphitic carbon nitride (g-C3N4) sheets are synthesized by interracial polymerization. The structure, morphology, and properties of the photocatalysts are characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and UV-visible (UV-Vis) spectroscopies, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and electrochemical analysis. Photocatalytic degradation of methylene blue is investigated to determine the photoactivity of the catalyst. The results suggest that g-CsN4 possesses good dispersion with an intercalated nanostructure and interfacial adhesion with PANI. In addition, the PANI/g-C3N4 composites retain the advantage of high thermal stability resident with g-C3N,. This is ascribed to a physical barrier effect on the emanation of degradation products and inhibited polymer motion. The resulting composites also show more intensive photocatalytic activity than does g-C3N4.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2015年第4期764-770,共7页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(21401001) 安徽省绿色高分子材料重点实验室资助项目~~
关键词 热稳定性 PANI/g-C3N4 催化性能 Thermal stability PANI/g-C3N4 Photocatalytic activity
  • 相关文献

参考文献29

  • 1Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen K.; Antonietti, M. Nat. Mater. 2009, 8, 76. doi: 10.1038/NMAT2317.
  • 2Zhang, Y. J.; Mori, T.; Niu, L.; Ye, J. H. Energ. Environ. ScL 2011, 4, 4517. doi: 10.1039/C1EE01400E.
  • 3Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. J. Am. Chem. Soc. 2013, 135, 18. doi: 10.1021/ja308249k.
  • 4Wang, X. C.; Chela, X. F.; Thomas, A.; Fu, X. Z.; Antonietti, M. Adv. Mater 2009, 21, 1609. doi: 10.1002/adma.200802627.
  • 5Wang, Y. J.; Shi, R.; Lin, J.; Zhu, Y. F. Energ. Environ. Sci. 2011, 4, 2922= doi: 10.1039/COEE00825G.
  • 6Zhang, Y. J.; Thomas, A.; Antonietti, M.; Wang, X. C. J. Am. Chem. Soc. 2009, 131, 50. doi: 10.1021/ja8-832f.
  • 7Bu, Y.; Chen, Z.; Li, W.Appl. Catal. B: Environ. 2014, 144, 622. doi: 10.1016/j.apcatb.2013.07066.
  • 8Zhang, S.; Li, J.; Wang, X.; Huang, .; Zeng, M.; Xu, J.ACS AppL Mater Interfaces 2014, 6, 22116. doi: 10.1021/am505528c.
  • 9Zhang, S.; Li, J.; Zeng, M.; Zhao, G.; Xu, J.; Hu, W.; Wang, X. Appl. Mater Interfaces 2013, 5, 12735. doi: 10.1021/am404123z.
  • 10Zhang, S.; Li, J.; Zeng, M.; Xu, J.; Wang, X.; Hu, W. Nanoscale 2014, 6, 4157. doi" 10.1039/c3nr06744k.

二级参考文献16

共引文献10

同被引文献213

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部