期刊文献+

线性传输方程带二次多项式重构的熵格式(英文)

Entropy Scheme with Quadratic Polynomial Reconstruction for Linear Advection Equation
下载PDF
导出
摘要 最近几年来,茅德康等发展了一类有限体积格式计算偏微分方程[1,3-4,6-9].该类格式得到比较好的计算结果.在文[8]中王和茅提出一个满足两个守恒律和三个守恒律的熵格式计算线性发展方程,但是该格式是基于线性多项式重构.本文发展了一个基于二次多项式重构满足两个守恒律的熵格式.数值试验表明本文的格式在长时间计算方面优于文[8]. In recent years, MAO and his co-workers developed a class of finite-volume schemes for evolution partial differential equations[l'3-4'6-9]. Numerical experiments showed the efficiency of the method. In [8], WANG and MAO proposed an entropy scheme satisfying two conversation laws and three conversation laws, but the reconstruction based on linear polynomial for linear advection equa- tion. In this paper, we develop an entropy scheme with quadratic polynomial reconstruction satisfy- ing two conversation laws for linear advection equation. Numerical experiments show that our scheme is more robust in long-time behaviors than that of [8].
出处 《应用数学》 CSCD 北大核心 2015年第2期256-259,共4页 Mathematica Applicata
基金 Supported by the National Natural Science Foundation of China(11201436)
关键词 线性发展方程 二次多项式重构 熵格式 Linear advection equation Quadratic polynomial reconstruction Entropy scheme
  • 相关文献

参考文献9

  • 1CHEN Rongsan, MAO Dekang. Entropy-tvd scheme for nonlinear scalar conservation laws[J]. J. Sci. Comput. , 2011,47 : 150-169.
  • 2Cockburn B,Johnson C,Shu C W,Tadmor E. Advanced Numerical Approximation of Nonlinear Hyper- bolic Equations[M]. Berlin : Springer, 1997.
  • 3CUI Yanfen,MAO Dekang. Numerical method satisfying the first two conservation laws for the Korte- weg-de Vries equation[J]. J. Comput. Phys. , 2007,227 : 376-399.
  • 4CUI Yanfen, MAO Dekang. Error self-canceling of a difference scheme maintaining two conservation laws for linear advection equation[J]. Math. Comput. , 2012,81: 715-741.
  • 5LeVeque R J. Finite Volume Methods for Hyperbolic Problems[M]. Cambridge:Cambridge University Press, 2002.
  • 6LI Hongxia. Entropy dissipating scheme for hyperbolic system of conservation laws in one space dimen- sion[D]. Shanghai: Shanghai University.
  • 7LI Hongxia,WANG Zhigang, MAO Dekang. Numerically neither dissipative nor compressive scheme for linear advection equation and its application to the euler system[J]. J. Sci. Comput. , 2008,36:285-331.
  • 8WANG Zhigang. Finitie difference scsemes satisfying multiconservation laws for linear advection equa- tions[J]. Shanghai: Shanghai University.
  • 9WANG Zhigang, MAO Dekang. Conservative difference scheme satisfying three conservation laws for lin- ear advection equation[J]. J. SHU (in Chinese), 2006,6 : 588-598.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部