期刊文献+

广义Schrdinger-Poisson系统正解的存在性(英文)

Existence of Positive Solutions for Generalized Schrodinger-Poisson System
下载PDF
导出
摘要 本文研究一类广义的Schrdinger-Poisson系统:{-Δu+Vu+qФg(u)=f(x,u),x∈R3,-ΔФ=2qG(u),x∈R3,这里V,q>0为常数.利用截断函数法和Pohozaev等式,文章得到该系统正解的存在性,推广了已有文献的结果. This paper deals with the following generalized Schr6dinger-Poisson system.{-△u+Vu+qφg(u)=f(x,u),in R^3 -△φ=2qG(u),in R^3where V,q ~ 0 are constants. By combining a cut-off function with a Pohozaev type identity,the ex- istence of positive solutions for this problem is proved. Some recent results by different authors are extended.
出处 《应用数学》 CSCD 北大核心 2015年第2期265-274,共10页 Mathematica Applicata
基金 Supported by the Natural Science Foundation of China(11271372) the Hunan Provincial Natural Science Foundation of China(12JJ2004)
关键词 广义Schrodinger-Poisson系统 变分方法 截断函数法 Pohozaev等式 Generalized Schrodinger-Poisson system Variational approach Cut-off function Pohozaev type identity
  • 相关文献

参考文献18

  • 1Benci V,Fortunato D. An eigenvalue problem for the Schr6dinger-Maxwell equations[J]. Topol. Methods Nonlinear Anal. , 1998,11 : 283-293.
  • 2D'Aprile T, Mugnai D. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schr6dinger-Maxwell e- quations[J]. Proc. Roy. Soc. Edinburgh Sect. A. , 2004,134:893-906.
  • 3Ambrosetti A. On Schr6dinger-Poisson systems[J]. Milan J. Math. , 2008,76:257-274.
  • 4Ambrosetti A, Ruiz D. Multiple bound states for the Schr6dinger-Poisson problem[J]. Commun. Cont- emp. Math. , 2008,10 : 391-404.
  • 5Ruiz D. Semiclassical states for coupled Schr6dinger-Maxwell equations concentration around a sphere [J]. Math. Models Methods Appl. 8ci. ,2005,15 : 141-161.
  • 6SUN Juntao. Infinitely many solutions for a class of sublinear Schr6dinger-Maxwell equations[J]. J. Math. Anal. Appl. ,2012,390:514-522.
  • 7Giovanna Cerami,Giusi Vaira. Positive solutions for some non-autonomous SchrOdinger-Poisson systems [J]. J. Differential Equations, 2010,248 : 521-543.
  • 8SUN Juntao,CHEN Haibo,Juan J Nieto. On ground state solutions for some non-autonomous Schr6dinger-Pois- son systems[J]. Journal of Differential Equations,2012,252: 3365-3380.
  • 9HUANG Lirong, Eug6nio M Rocha, CHEN Jianqing. Positive and sign-changing solutions of a Schr6dinger-Poisson system involving a critical nonlinearity[J]. Journal of Malhematical Analysis and Applications, 2013, 408:55-69.
  • 10DING Ling,Ll Lin, ZHANG Jingling. Multiple solutions for nonhomogenous Schr6dinger-Poisson sys- tems with asymptotical nonlinearity in R3 [J]. Taiwan Residents Journal of Mathematics, 2013,17:1627-1650.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部