摘要
本文首先介绍Orlicz空间L*M的基本概念,然后讨论Gauss-Weierstrass算子在Orlicz空间的逼近性质,最后利用K-泛函和光滑模给出逼近的正逆定理,并证明相关结果的等价性.
In this paper, first we introduce the Orlicz spaces LM, then we consider the convergence of Oauss-Weierstrass operators in Orlicz spaces, and finally by use of K-func- tional and modulus of smoothness we obtain the direct and converse theorems of approxima- tion.
出处
《应用数学》
CSCD
北大核心
2015年第2期414-419,共6页
Mathematica Applicata
基金
国家自然科学基金资助项目(11161033)