期刊文献+

Orlicz空间中Gauss-Weierstrass算子逼近 被引量:6

Approximation by Gauss-Weierstrass Operators in Orlicz Spaces
下载PDF
导出
摘要 本文首先介绍Orlicz空间L*M的基本概念,然后讨论Gauss-Weierstrass算子在Orlicz空间的逼近性质,最后利用K-泛函和光滑模给出逼近的正逆定理,并证明相关结果的等价性. In this paper, first we introduce the Orlicz spaces LM, then we consider the convergence of Oauss-Weierstrass operators in Orlicz spaces, and finally by use of K-func- tional and modulus of smoothness we obtain the direct and converse theorems of approxima- tion.
出处 《应用数学》 CSCD 北大核心 2015年第2期414-419,共6页 Mathematica Applicata
基金 国家自然科学基金资助项目(11161033)
关键词 ORLICZ空间 GAUSS-WEIERSTRASS算子 K-泛函 光滑模 Orlicz space Gauss-Weierstrass operator K -functional Modulus of smooth-ness
  • 相关文献

参考文献4

二级参考文献23

  • 1Samko, S. G., Kilbas, A. A., Marichev, O. I.: Fractional Integrals and Derivatives Theory and Application, Gordan and Breach Science, New York, 1993.
  • 2Rubin, B. S.: Inversion of potentials in R^n with the aid of Gauss-Weierstrass integral. Math. Zametki, 41(1), 34-42 (1985).
  • 3Rubin, B. S.: Description and inversion of Bessel potentials by using hypersingular integrals with weighted difference. Diff. Urav., 10, 1805-1818 (1986).
  • 4Aliev, I. A.: Eryigit, M.: On inversion of Bessel potentials with the aid of weighted wavelet transforms. Math. Nachrichten, 242, 27-37 (2002).
  • 5Aliev, I. A., Rubin B. S.: Parabolic potentialsand wavelet transforms the generalized translation. Studia Mathematica, 145(1), 1-16 (2001).
  • 6Stempak, K.: Almost everywhere summability of Laguerre series. Studia Mathematica, 100(2), 129-147 (1991).
  • 7Trimeche, K.: Generalized Wavelets and Hypergroups, Gordon and Breach, New York, 1997.
  • 8Yildirim, H,: Riesz potentials generated by a generalized shift operator, Ankara Uni. Graduate school of Natural and Applieds Sciences Depart. of Math. Ph. D. thesis, 1995.
  • 9Yildirim, H., Sarlkaya, M. Z.: On the generalized Riesz type potentials. J. Inst. Math. Comp. Sci., 14(3), 217-224 (2001).
  • 10Yildirim, H.: Inversion of Bessel-n potentials generated by the generalized shift operators. Int. J. Appl. Math., 1(6), 161-169 (1999).

共引文献26

同被引文献25

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部