期刊文献+

压水堆核电厂严重事故卸压阀能力评估 被引量:2

Evaluation of SADV Capacity in PWR Nuclear Power Plant
下载PDF
导出
摘要 在百万千瓦级压水堆核电厂中为防止高压熔堆严重事故发生时发生高压熔喷(HPME)和安全壳直接加热(DCH),参考EPR堆型在稳压器上额外设置严重事故卸压阀(SADV),对主系统进行快速卸压。建立百万千瓦级压水堆核电厂事故分析模型,选取丧失厂外电叠加汽动辅助给水泵失效,一回路管道小破口以及丧失主给水三条典型严重事故序列,进行系统热工水力及卸压能力分析。计算结果表明:如果不开启严重事故卸压阀,三条事故序列在压力容器下封头失效时一回路压力均较高,有发生高压熔喷和安全壳直接加热的风险。根据严重事故管理导则开启严重事故卸压阀,可以有效降低一回路压力,三条事故序列均可以防止高压熔喷和安全壳直接加热发生。针对卸压阀阀门面积的影响进行分析,表明阀门面积减小到4.8×10-3 m2后下封头失效时RCS压力会有所增加,仍然能够满足RCS的卸压要求,且可延迟下封头失效时间。 To prevent high-pressure melt-spray event (HPME) and direct containment heat (DCH), dedicated severe accident depressurization valve (SADV) is added to the pressurizer with the reference of EPR design. The mechanism model for 1000 MWe PWR nuclear power plant is built and three sequences of TMLB', SBLOCA and LOFW are selected to be investigated. Thermohydraulic and depressurization of RCS is analyzed, which shows that: without opening SADV, the RCS pressure is high enough to induce large risk of HPME and DCH when lower head of the RPV fails for the selected typical severe accident sequences~ while with opening SADV according to severe accident management guidelines, the RCS pressure is low enough to prevent HPME and DCH for the selected typical severe accident sequences. The effect of SADV area is also analyzed, which shows that the RCS pressure will increase by decreasing the valve area to 4. 8e-3 m2 when lower head of the RPV fails; while the criterion for RCS depressurization is still satisfied and the time for lower head of the RPV failure is also delayed.
出处 《核科学与工程》 CSCD 北大核心 2015年第1期157-162,共6页 Nuclear Science and Engineering
基金 国家自然科学基金(11205099)
关键词 严重事故卸压阀 高压熔堆 快速卸压 severe accident depressurization valve high-pressure core melt accident rapid depressurization
  • 相关文献

参考文献9

  • 1Hanson D.J. Depressurization as an accident management strategy to minimize the consequences of direct containment heating[R].NUREG/CR-5447, USA.- NRC, 1990.
  • 2Brownson D. A. Intentional depressurization accident management strategy for PWRER].NUREG /CR-5937,USA:NRC,1993.
  • 3Zhang K. , Cao X.W. , Deng J. , et al. Evaluation of intentional depressurization strategy in Chinese 600 MWe PWR NPP [ J ]. Nuclear Engineering and Design. 2008,238 ~ 1720- 1727.
  • 4Heikki Sjovall. Severe accident management in Olkiluoto 1 and 2[C]//OECD workshop on the implementation of severe accident management measures. PSI-Villigen, Switzerland, 2001.
  • 5Kwon Y. M. , Lira H. S. , Song J. H. Design options for safety depressurization system[J]. Nuclear Engineering and Design. 1998,179:287-296.
  • 6Francois Bouteille,Garo Azarian,Dietmar Bittermann,et al. The EPR overall approach for severe accident mitigation[J]. Nuclear Engineering and Design. 2006, 236:1464-1470.
  • 7Azarian G, Gandrille P, Gasperini M, et al. Severe accident analysis to prevent high pressure scenarios in the EPR[C]// Proceedings of ICAPP' 10. San Diego, California USA:Curran Associates,2010 : 1189-1200.
  • 8USNRC. Individual plant examination for severe accident vulnerabilities[R]. 10 CFR 50. 54(f), USA : NRC, 1988.
  • 9USNRC. Severe accident risks: an assessment for five U. S. nuclear power plants [ R], NUREG-1150, USA: NRC,1990.

同被引文献3

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部