期刊文献+

十肽对变异链球菌作用的差异蛋白质组学研究 被引量:4

Differential proteomics on synthetic antimicrobial decapeptide against Streptococcus mutans
下载PDF
导出
摘要 目的利用差异蛋白质组学技术检测十肽对变异链球菌蛋白的作用反应,初步鉴定并验证变异链球菌致龋过程中的部分重要蛋白质。方法人工合成十肽(氨基酸序列:KKVVFKVKFK-NH2),利用双向电泳技术分离十肽作用前后变异链球菌的总蛋白,采用质谱分析联合生物信息学技术鉴定十肽作用前后发生差异性改变的变异链球菌蛋白质,并在蛋白质水平验证关键差异蛋白质烯醇酶的表达情况。结果十肽作用前后变异链球菌蛋白质发生明显变化,其中发生差异性改变的蛋白质功能主要包括降解碳水化合物(经糖酵解途径),蛋白质折叠、结合、运输及蛋白质翻译等。Western blot验证结果显示,十肽处理后烯醇酶的表达量明显降低。结论人工合成抗菌肽十肽处理前后变异链球菌的蛋白质表达发生明显变化,推测其可能通过改变烯醇酶等标志性蛋白的表达而达到防龋作用。 Objective To compare the protein profiles between decapeptide-treated and untreated planktonic cells of Streptococcus mutans (S. rnutans) by differential proteomic analysis to determine and identify the key proteins. Methods In our previous study, we investigated decapeptide (KKVVFKVKFK-NH2), which was a novel adenosine monophosphate. Com- pared with other oral pathogens tested, decapeptide had a preferential antibacterial activity against S. mutans. It also inhibited S. mutans biofilm formation and reduced the one-day developed biofilm. In the present study, we first synthesized decapep- tide, and then compared the protein profiles between decapeptide-treated and untreated planktonic cells ofS. mutans by two- dimensional gel electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. We also verified different expressions of key protein enolase in the protein level. Results The results showed that decapeptide altered the protein expression of planktonic S. mutans. These proteins were functionally involved in carbohydrate degradation by gly- colysis, protein folding, conjunction, transport, translation, adenosine triphosphate binding, protein binding, sequence-specific DNA binding, transcription factor activity, and two-component response regulator activity. Western blot results showed that enolase protein expression decreased obviously in decapeptide-treated cells of S. mutans. Conclusion The protein expression of S. mutans significantly changed after synthetic antimicrobial decapeptide treatment, suggesting that decapeptide may pre- sent a preferential effect on oral caries by changing the expression of certain key proteins, such as enolase protein.
出处 《华西口腔医学杂志》 CAS CSCD 北大核心 2015年第2期187-191,共5页 West China Journal of Stomatology
基金 四川省科技支撑计划基金资助项目(2008FZ0173)
关键词 十肽 变异链球菌 差异蛋白质组学 decapeptide Streptococcus mutans differential proteomics
  • 相关文献

参考文献19

  • 1刘奕,费伟,王丽娜,董广艳,吴红崑.人工合成抗菌肽对口腔细菌抗菌性能的初步研究[J].华西口腔医学杂志,2014,32(6):601-605. 被引量:15
  • 2Steen H, Mann M. The ABC's (and XYZ's) of peptide sequencing[J]. Nat Rev Mol Cell BioI, 2004, 5(9):699-711.
  • 3Zhang A, Sun H, Wang P, et al. Salivary proteomics in biomedical research[J]. Clin Chim Acta, 2013, 415:261-265.
  • 4Guo LH, Wang HL, Liu XD, et al. Identification of protein differences between two clinical isolates of Streptococcus mutans by proteomic analysis[J]. Oral Microbiol Immunol, 2008,23(2):105-111.
  • 5Wang Z, Jiang L, Huang C, et al. Comparative proteomics approach to screening of potential diagnostic and therapeutic targets for oral squamous cell carcinoma[J]. Mol Cell Proteomics, 2008, 7(9):1639-1650.
  • 6Langley SR, Dwyer J, Drozdov I, et al. Proteomics: from single molecules to biological pathways[J]. Cardiovasc Res, 2013,97(4):612-622.
  • 7Krishna Prasad RB, Sharma A, Babu HM. An insight into salivary markers in oral cancer[J]. Dent Res J: Isfahan, 2013, 10(3):287-295.
  • 8Li J, Wang W, Wang Y, et al. Two-dimensional gel-based proteomic of the caries causative bacterium Streptococcus mutans UA159 and insight into the inhibitory effect of carolacton[J]. Proteomics, 2013, 13(23/24):3470-3477.
  • 9Harry JL, Wilkins MR, Herbert BR, et al. Proteomics: capacity versus utility[J]. Electrophoresis, 2000, 21(6): 1071-1081.
  • 10Len AC, Cordwell SJ, Harty DW, et al. Cellular and extracellular proteome analysis of Streptococcus mutans grown in a chemostat[J]. Proteomics, 2003, 3(5):627-646.

二级参考文献37

  • 1周学东,肖晓蓉.口腔微生物[M].成都:四川大学出版社,2002:384-392.
  • 2Rupp M E, Archer G L. Coagulase-negative staphylococci: Pathogens associated with medical progress. Clin Infect Dis, 1994, 19: 231~243
  • 3Thylefors J D, Harbarth S, Pittet D. Increasing bacteremia due to coagulase-negative staphylococci: fiction or reality? Infect Control Hosp Epidemiol, 1998, 19: 581~589
  • 4Zhang X Q, Ren S X, Li H L, et al. Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228). Mol Microbiol, 2003, 49: 1577~1593
  • 5Stephenson K, Hoch J A. Two-component and phosphorelay signal-transduction systems as therapeutic targets. Curr Opin Pharmacol, 2002, 2: 507~512
  • 6Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res, 2003, 31: 3381~3385
  • 7Guex N, Peitsch M C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis, 1997, 18: 2714~2723
  • 8Peitsch M C. Protein modeling by E-mail. Bio/Technology, 1995, 13: 658-660
  • 9Throup J P, Koretke K K, Bryant A P, et al. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol Microbiol, 2000, 35: 566~576
  • 10Lange R, Wagner C, de Saizieu A, et al. Domain organization and molecular characterization of 13 two-component systems identified by genome sequencing of Streptococcus pneumoniae. Gene, 1999, 237: 223~234

共引文献18

同被引文献54

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部