期刊文献+

负载型Ni-Co-P/CNFs催化剂的制备及释氢性能 被引量:7

Hydrogen generation from the hydrolysis of sodium borohydride solution over the supported Ni-Co-P/CNFs catalysts
下载PDF
导出
摘要 以纳米碳纤维(CNFs)为基体材料,采用化学镀法在CNFs表面沉积了Ni-Co-P催化剂。研究了催化剂用量,硼氢化钠、氢氧化钠浓度,温度等对碱性硼氢化钠溶液水解释氢的影响。电感耦合等离子体原子发射光谱法(ICP-AES)测试得出负载型Ni-Co-P催化剂含镍13.30%(质量分数,下同)、钴82.25%、磷4.45%。硼氢化钠水解释氢实验结果表明,产氢速率与催化剂用量呈线性关系。当温度为45℃、催化剂浓度为7.5 g/L、氢氧化钠浓度为5%、硼氢化钠浓度为2.5%时,氢气释放速率达到最大值18.044 L/(g·min)。通过对负载型催化剂Ni-Co-P/CNFs催化碱性硼氢化钠溶液释放氢气动力学研究表明,该催化剂的活化能Ea为51.57 k J/mol。 The Ni-Co-P catalysts supported on carbon nanofibers(CNFs) were prepared via electroless deposition;the mass fractions of nickel,cobalt and phosphorus in Ni-Co-P layer are 13.30%,82.25%and4.45%,respectively,as determined by ICP-AES.The effects of catalyst amount,sodium borohydride and sodium hydroxide concentrations and reaction temperature on the rate of hydrogen generation in the hydrolysis of alkaline NaBH4 solution were investigated.The results indicated that the rate of hydrogen generation is proportional to the used catalyst amount;a maximum hydrogen generation rate of 18.044 L/(g·min) is achieved at 45 ℃ by hydrolysis of 2.5%NaBH4 solution containing 5%NaOH and 7.5 g/L Ni-Co-P/CNFs catalyst with a Ni-Co-P loading of 18.127%.Moreover,a kinetic study shows that the activation energy for the hydrolysis of alkaline NaBH4 solution under those conditions is 51.57 kJ/mol.
出处 《燃料化学学报》 EI CAS CSCD 北大核心 2015年第3期372-378,共7页 Journal of Fuel Chemistry and Technology
基金 山东省自然科学基金(ZR2011EMM005)
关键词 化学镀 镍-钴-磷 纳米碳纤维 硼氢化钠 氢气释放 electroless deposition nickel-cobalt-phosphorus carbon nanofibers sodium borohydride hydrogen generation
  • 相关文献

参考文献40

  • 1I-IOFFERT M. Governments must pay for clean-energy innovation[ J ]. Nature, 2011, 472 : 137-137.
  • 2SCI-ILAPBACH L, Zt.J'TTEL A. Hydrogen-storage materials for mobile applications [ J ]. Nature, 2001, 414: 353-358.
  • 3王威燕,杨运泉,罗和安,彭会左,张小哲,胡韬.Ni-Co-W-B非晶态催化剂的制备及其加氢脱氧性能[J].催化学报,2011,32(10):1645-1650. 被引量:14
  • 4SANTOS D M F, SEQUEIRA C A C. Sodium borohydride as a fuel for the future [J]. Renew Sust Energy Rev, 2011, 15(8) : 3980-4001.
  • 5王晓磊,邓文义,于伟超,苏亚欣.污泥微波高温热解条件下富氢气体生成特性研究[J].燃料化学学报,2013,41(2):243-251. 被引量:15
  • 6HUANG Z M, SU A, LIU Y C. Hydrogen generator system using Ru catalyst for PEMFC (proton exchange membrane fuel cell) applications [J]. Energy, 2013, 51: 230-236.
  • 7YU L, MATTHEWS M A. A reactor model for hydrogen generation from sodium borohydride and water vapor[J]. Int J Hydrogen Energy, 2014, 39(8) : 3830-3836.
  • 8JENA P. Materials for hydrogen storage: Past, present, and future[J]. J Phys Chen Lett, 2011, 2(3) : 206-211.
  • 9KWON FI J, KIM J, CHO S W, YOO J H, ROH K M, KIM W. The effect of Sc addition on the hydrogen storage capacity of Ti0.32 Cr0.43 Vo. 25 alloy [ J ]. Int J Hydrogen Energy, 2014, 39 (20) : 10600-10605.
  • 10ZHAO Y P, DING L Z, ZHONG T S, YUAN H T, JIAO L F. Hydrogen storage behavior of 2LiBH4/MgH2 composites lmprovea by me catalysis of CoNiB nanoparticles[ J]. Int J Hydrogen Energy, 2014, 39(21) : 11055-11060.

二级参考文献23

  • 1张钦明,王树众,沈林华,段百齐.污泥制氢技术研究进展[J].现代化工,2005,25(11):29-32. 被引量:22
  • 2Liu, H. M.,Li, H. P.,Shan, L. H.,Wu, J..Synthesis of steroidal lactone by penicillium citreo-viride[J].中国生物学文摘,2007,21(3):23-23. 被引量:1
  • 3王伟,蓝煜昕,李明,郑蕾,刘世杰,程文翰.生物质废弃物快速热解制取富氢气体的实验研究[J].环境工程学报,2007,1(8):114-119. 被引量:6
  • 4马承荣,肖波,陈英明,江建方,邹先枚.生物质气化制取富氢燃气的实验研究[J].燃烧科学与技术,2007,13(5):461-467. 被引量:23
  • 5毛宗强.氢能-21世纪的绿色能源[M]北京:化学工业出版社,2005.
  • 6DENG W-Y,YAN J-H,LI X-D,WANG F ZHU X-W LU S-Y CEN K-F. Emission characteristics of volatile compounds during sludges drying process[J].Journal of Hazardous Materials,2009,(01):186-192.doi:10.1016/j.jhazmat.2008.05.022.
  • 7丁兆军;舒新前;白广彬.城市污水污泥热解制氢的实验研究[J]武汉理工大学学报,2006(增刊):228-232.
  • 8MENENDEZ J A,DOMINGUEZ A,INGUANZO M,PIS J J. Microwave-induced drying,pyrolysis and gasification (MWDPG) of sewage sludge:Vitrification of the solid residue[J].Journal of Analytical and Applied Pyrolysis,2005,(1/2):406-412.
  • 9DOMINGUEZ A,MENENDEZ J A,INGUANZO M,PIS J J. Production of bio-fuels by high temperature pyrolysis of sewage sludge using conventional and microwave heating[J].Bioresource Technology,2006,(10):1185-1193.doi:10.1016/j.biortech.2005.05.011.
  • 10DOMINGUEZ A,FERNANDEZ Y,FIDALGO B. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge[J].Chemosphere,2008,(03):397-403.doi:10.1016/j.chemosphere.2007.06.075.

共引文献27

同被引文献55

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部