期刊文献+

一种基于节点中心度的社区划分新算法

New Algorithm of Detecting Community Structure Based on Degree Centrality
下载PDF
导出
摘要 针对传统的K-means算法的划分结果受初始中心节点影响较大,以及每次刷新中心节点均需要进行计算,使得算法运行时间较高等问题,提出一种基于中心度的K-means改进算法CDK算法。该算法根据节点的中心度以及节点之间的最短路径来确定初始社团的中心节点,然后根据节点之间的Jaccard相似度,将非中心节点划分到K个社团中。CDK算法避免了传统的K-means算法由于随机选取初始中心点而造成划分结果不稳定、精度较差的问题,同时CDK算法在刷新中心节点的时候无须进行计算,具有更低的时间复杂度。 Dividing the result for the traditional K-means algorithm is influenced by the initial central node, and each refresh center nodes need to be calculated, cause the higher algorithm running time and other issues. Proposes an improved algorithm based on centrality of K-means,CDK algorithm. The algorithm is based on the shortest path between the node and the node to the center of the central node determining the initial associations, then according to Jaccard similarity between nodes, will be divided into K non-central node in societies. CDK al-gorithm avoids the traditional K-means algorithm due to the random selection of initial results of the center divide and cause instability,poor accuracy problems, while CDK refresh algorithm when the central node without calculation, has a lower time complexity.
作者 乔健 杨昆朋
出处 《现代计算机(中旬刊)》 2015年第3期22-25,共4页 Modern Computer
关键词 中心度 K-MEANS 社区发现 Degree Centrality K-means Community Detecting
  • 相关文献

参考文献11

  • 1Amaral LAN ,Scala A,Barthelemy M ,et al. Classes of Small-World Networks[J]. Proc. Natl. Acad. Sci. USA,2000,97(21 ) : 11149- 11152.
  • 2Redner S. How Popular is Your Paper. An Empirical Study of the Citation Distribution[J]. EurPhys JB, 1998,4:131-134.
  • 3杨博,刘大有,LIU Jiming,金弟,马海宾.复杂网络聚类方法[J].软件学报,2009,20(1):54-66. 被引量:208
  • 4Watts D J, Strogatz Steven H. Collective Dynamics of Small-World" Networks[J]. Nature, 1998,393 (6684) : 440-442.
  • 5Albert R, Barabasi A-L. Emergence of Scaling in Random Networks[J]. Scinece, 1999,286 (5439):509-512.
  • 6Girvan M, Newman M E J. Community Structure in Social and Biological Networks[J]. Proc. Natl. Acad. Sci., 2002,99 (12):7821-7826.
  • 7Yawen Jiang, Caiyan Jia, Jian Yu. An Efficient Community Detection Method Based on Rank Centrality[J]. Physica A, 2013,392:2182-2194.
  • 8J.B.MacQueen. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability,Berkeley,University of California Press, 1 : 281-297 (1967).
  • 9Frey B.J.and Dueck D.Science, 315,972-976 (2007).
  • 10C.Ding, X.He, Horst D.Simon, SDM (2004).

二级参考文献56

  • 1Watts D J, Strogatz SH. Collective dynamics of Small-World networks. Nature, 1998,393(6638):440-442.
  • 2Barabasi AL, Albert R. Emergence of scaling in random networks. Science, 1999,286(5439):509-512.
  • 3Barabasi AL, Albert R, Jeong H, Bianconi G. Power-Law distribution of the World Wide Web. Science, 2000,287(5461):2115a.
  • 4Albert R, Barabasi AL, Jeong H. The Internet's Achilles heel: Error and attack tolerance of complex networks. Nature, 2000, 406(2115):378-382.
  • 5Girvan M, Newman MEJ. Community structure in social and biological networks. Proc. of the National Academy of Science, 2002,9(12):7821-7826.
  • 6Guimera R, Amaral LAN. Functional cartography of complex metabolic networks. Nature, 2005,433(7028):895-900.
  • 7Palla G, Derenyi I, Farkas I, Vicsek T. Uncovering the overlapping community structures of complex networks in nature and society. Nature, 2005,435(7043):814-818.
  • 8Wilkinson DM, Huberman BA. A method for finding communities of related genes. Proc. of the National Academy of Science, 2004,101(Suppl.1):5241-5248.
  • 9Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D. Defining and identifying communities in networks. Proc. of the National Academy of Science, 2004,101 (9):2658-2663.
  • 10Palla G, Barabasi AL, Vicsek T. Quantifying social group evolution. Nature, 2007,446(7136):664-667.

共引文献207

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部