期刊文献+

Morphology dependent photocatalytic activity of WO_3 nanostructures 被引量:3

Morphology dependent photocatalytic activity of WO_3 nanostructures
下载PDF
导出
摘要 The shape of nanostructure has important effects on their properties, therefore in this study, we have prepared and characterized three different morphologies of WO_3 nanostructures i.e. nanorod, nanosphere and nanoplate for surveying shape effect on their photocatalytic properties toward degradation of Rhodamine B (RhB) dye. Obtained results show that nanoplate WO_3 in comparison with others has the best photocat- alytic activity. According to SEM, and photocatalytic degradation results, the reason for this behavior is the sharp edges and corners of WO_3 nanoplates. Because of their low coordination number, atoms located in the edges and comers of the WO_3 nanoplates have more activity, adsorb more RhB and therefore give more photocatalytic activity to the WO_3 nanoplates. Using of different scavengers showed that hydroxyl radicals are mainly responsible for photocatalytic activity of WO_3 nanoplates and nangspheres but for WO_3 nanorods, superoxide radicals are the main photocatalytic degradation agents. The shape of nanostructure has important effects on their properties, therefore in this study, we have prepared and characterized three different morphologies of WO_3 nanostructures i.e. nanorod, nanosphere and nanoplate for surveying shape effect on their photocatalytic properties toward degradation of Rhodamine B (RhB) dye. Obtained results show that nanoplate WO_3 in comparison with others has the best photocat- alytic activity. According to SEM, and photocatalytic degradation results, the reason for this behavior is the sharp edges and corners of WO_3 nanoplates. Because of their low coordination number, atoms located in the edges and comers of the WO_3 nanoplates have more activity, adsorb more RhB and therefore give more photocatalytic activity to the WO_3 nanoplates. Using of different scavengers showed that hydroxyl radicals are mainly responsible for photocatalytic activity of WO_3 nanoplates and nangspheres but for WO_3 nanorods, superoxide radicals are the main photocatalytic degradation agents.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第2期171-177,共7页 能源化学(英文版)
关键词 PHOTOCATALYST tungsten trioxide morphology dependent NANOSTRUCTURE photocatalyst tungsten trioxide morphology dependent nanostructure
  • 相关文献

同被引文献3

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部