期刊文献+

Tectonic Phase Separation Applied to the Sudetic Marginal Fault Zone(NE part of the Czech Republic)

Tectonic Phase Separation Applied to the Sudetic Marginal Fault Zone(NE part of the Czech Republic)
下载PDF
导出
摘要 This study emphasizes the advantage of tectonic phase separation in determination of a tectonic evolution of complicated fault zones. The research focused on the Sudetic Marginal Fault Zone(SMFZ) –a 250 km long active fault zone with documented intraplate seismicity situated on the NE margin of the Bohemian Massif(the Czech Republic). The tectonic history of the SMFZ as well as its kinematic development has been rather complicated and not quite understood. A field structural investigation was carried out in extensive surroundings of the fault zone. The fault-slip data were collected in a number of natural outcrops and quarries with the aim at establishing a robust and field-constrained model for local brittle structural evolution of the studied area. A paleostress analysis was calculated using the collected fault-slip data inversion. The T-Tecto software was utilized for semiautomatic separation of the paleostress phases. Simultaneously three methods of data separation were employed:(1) the Gauss inverse method,(2) the Visualization of Gauss object Function, and(3) the frequency analysis. Within the fault zone multiphase movements were observed on various types of faults as well as wide range of the kinematic indicators orientations. The frequency analysis confirmed the multiphase history of the SMFZ. The calculated tectonic phases were divided according to their relative age as constrained by cross cutting relationships and, where observed, multiple striations on a single fault plane and classified from the oldest to the younger. Data separation and inversion usingT-Tecto software with the Gauss inverse method revealed four different stress phases which are 3 strike-slip stress regimes and one compressional regime. The strike-slip regimes are characterized by σ1 trending NW-SE(43), NNE-SSW(18), ENE-WSW(76) and the compressional one by σ1 trending W-E(26). First, compression occurred parallel to the SMFZ supposedly during the Variscan period. Second, compression at an angle of 60° to general direction of the SMFZ yielded right-lateral movement along the fault zone. This is considered to have occurred during the late-Variscan and post-Variscan period. Third, compression in the W-E direction with almost vertical extension led to reverse movement along the fault zone. This is considered to have occurred during Cenozoic. Fourth, compression almost perpendicular to the SMFZ led to left-lateral transpression along the SMFZ. This is considered to have occurred during Quaternary.
出处 《Journal of Mountain Science》 SCIE CSCD 2015年第2期251-267,共17页 山地科学学报(英文)
基金 supported by the Grant Agency of Charles University (43-258020) the Czech Science Foundation (250/09/1244) the Institute of Rock Structure and Mechanics AS CR, v.v.i. (A VOZ30460519)
关键词 Sudetic Marginal Fault Zone Paleostress reconstruction Active tectonics Frequency analysis 活动断裂带 捷克共和国 构造演化 相分离 东北部 应用 波希米亚地块 高斯函数
  • 相关文献

参考文献88

  • 1Angelier A, Mechler P (1977) On a graphical method of research of main constraints also usable in seismology: the Right dihedra method. Bulletin Geological Society of France 19: 1309-1318. (In French).
  • 2Alexandrowski P, Kryza R, Mazur S, et al. (1997) Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif. Geological Magazine 134: 727-739.
  • 3Alexandrowsld P (1998) The Intra-Sudetic Fault Zone and the Variscan strike-slip tectonics in the West Sudetes. Geolines 6: 6-8.
  • 4Angelier J. (1979) Tectonic analysis of fault slip data sets. Journal of Geophysical Research 89, B7: 5835-5848.
  • 5Angelier J (1984) Determination of the mean principle directions of stresses for a given fault population. Tectonophysics 56: 17-26.
  • 6Angelier J (1994) Fault Slip Analysis and Paleostress Reconstruction. In: Hancock PL (ed.), Continental Deformation. Pergamon Press, Oxford, Great Britain. pp 53- 100.
  • 7Badura J, Zuehiewicz W, G6recki A, et al. (2003a) Morphoteetonic properties of the Sudetic Marginal Fault, SW Poland. Aeta Montana A 24 131: 21-49.
  • 8Badura J, Zuehiewicz W, C-areeki A, et al. (2003b) The Sudetic Marginal Fault, SW Poland, in the light of morphometrie studies. Geolines 16: 13-14.
  • 9Badura J, Zuehiewicz W, Przybylski B (2004) The Sudetic Marginal Fault, SW Poland: a reactivated sinistral-normal fault. Geolines 17: 17-18.
  • 10Badura J, Zuehiewiez W, Stepaneikova P, et al. (2007) The Sudetie Marginal Fault: A young morphoteetonie feature at the NE margin of the Bohemian Massif, Central Europe. Acta Geodynamiea et Geomaterialia 148: 7-29.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部