期刊文献+

基于第一性原理对硅取代、掺杂锯齿形石墨烯纳米带的电子结构及输运性质的研究 被引量:4

First-principles Study on the Electronic Structure and Transport Properties of Silicon Substituted and Doped Zigzag Graphene Nanoribbons
下载PDF
导出
摘要 本文基于第一性原理对硅取代、掺杂石墨烯纳米带不同位置的电子能带结构、态密度及电子器件的电子输运性质进行了分析与研究。结果表明,锯齿形石墨烯纳米带(ZGNRs)在硅原子取代及掺杂后由原来的半导体态转变为金属态。在各种模型中,对于体系态密度有贡献的一般为原子指数为1、在p轨道的硅原子(Si1p);原子指数为2、在p轨道的硅原子(Si2p)和碳原子(C2p);少量的原子指数为1、在s轨道的氢原子(H1s)和碳原子(C1s)。经分析,在各取代位置中两端硅原子取代的锯齿形石墨烯纳米带的体系能量最小,表明其为最有可能发生的取代位置。在掺杂位置中,体系能量计算结果显示填隙硅原子的能量更低,最有可能发生此种掺杂。电子输运性质的研究中,在所有的取代位置中单边硅原子取代组成的电子器件电子输运性质最好。在所有电子器件模型中电子输运性质最好的是填隙硅原子掺杂模型。 Based on the first-principles,the electronic band structure,density of the states and the electronic transport properties of electronic devices of the different positions of the silicon substituted and doped in graphene nanoribbons systems were calculated and studied. The results show that,zigzag graphene nanoribbons( ZGNRs) change the semiconductor original state into a metallic state after silicon atoms substituted and doped. In various models,the density of states is generally contributed by the silicon atom with atom indices 1 and the orbital p( Si1p),the silicon atom and the carbon atom with atom indices 2 and the orbital p( Si2p) and( C2p),and the few hydrogen atom and the carbon atom with atom indices 1 and the orbital s( H1s) and( C1s). After analyzing,the system energy of both-edge doped the zigzag graphene nanoribbons is a minimum of energy in all the position of the substituted,showing that is the most likely position of substituted position. Doping position,the system energy calculations show that gap-doped silicon atoms have the lower energy. Such doping is most likely to occur. In the study ofelectronic transport properties,the electronic device composed of the one-side silicon substituted has the best transport properties in all the substituted positions. The best electronic transport properties of all the electronic devices model is the gap-silicon atoms doped model.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2015年第3期808-815,共8页 Journal of Synthetic Crystals
基金 上海高校青年教师培养资助计划(ZZGJD12114)
关键词 石墨烯纳米带 第一性原理 能带结构 态密度 输运性质 graphene nanoribbon first principle band structure density of state transport property
  • 相关文献

参考文献34

  • 1Novoselov K S,Geim A K,Morozov S V,et al.Electric Field Effect in Atomically Thin Carbon Films[J].Science,2004,306(5696):666-669.
  • 2Peiers R E.Quelques Propriétés Typiques Des Corps Solides[J].Annales de I'institut Henri Poincare,1935,5(3):177-222.
  • 3Landau L D.Zur Theorie Der PhasenumwandlungenⅡ[J].Phys.Rev.,1968,176(1):250-254.
  • 4Hee K C,Diana Y S,Jaheon K,et al.A Route to High Surface Area,Porosity and Inclusion of Large Molecules in Crystals[J].Nature,2004,427(6974):523-527.
  • 5Schadler L S,Giannaris S C,Ajayan P M.Load Transfer in Carbon Nanotube Epoxy Composites[J].Appl.Phys.Lett..,1998,73(26):3842-3844.
  • 6Lee C,Wei X D,Kysar J W,et al.Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene[J].Science,2008,321(5887):385-388.
  • 7Zhang Y B,Tan Y W,Stormer H L,et al.Experimental Observation of the Quantum Hall Effect and Berry's Phase in Graphene[J].Nature,2005,438(7065):201-204.
  • 8Zhu Y,Murali S,Cai W,et al.Graphene and Graphene Oxide:Synthesis,Properties and Application[J].Advanced Materials,2010,22(35):3906-3924.
  • 9Novoselov K S,Jiang Z,Zhang Y,et al.Room Temperature Quantum Hall Effect in Graphene[J].Science,2007,315(5817):1379-1379.
  • 10Novoselov K S,Geim A K,Morozov S V,et al.Two Dimensional Gas of Massless Dirac Fermions in Graphene[J].Nature,2005,438(7065):960-964.

二级参考文献40

  • 1Di C, Wei D, Yu G, et al. Patterned graphene as source/ drain electrodes for bottom contact organic field-effect transistors [J]. Adv Mater,2008,20:3289.
  • 2Liu F, Ming P B, Li J. Ab initio calculation of ideal strength and phonon insta-bility of graphene in tension [J]. Phys Rev B, 2007,76 : 064120.
  • 3Novoselov K S, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004,306: 666.
  • 4Geim A K, Novoselov K S. The rise of grapheme [J]. Nature Mater, 2007,6 : 183.
  • 5Meyer J C, Geim A K, Katsnelson M I,et al. The structure of suspended graphene sheets [J]. Nature, 2007,446: 60.
  • 6Ni Z H, Wang H M, Kasim J,et al. Graphene thickness determination using reflection and contrast spectroscopy [J]. Nano Lett, 2007,7:2758.
  • 7Ohta T,et al. Controlling the electronic structure of bilayer graphene [J]. Science, 2006,313 : 951.
  • 8Berger C,et al. Electronic confinement and coherence in patterned epitaxial graphene [ J ]. Science, 2006,312 : 1191.
  • 9Sutter P W, Flege J, Sutter E A S. Epitaxial graphene on ruthenium [J]. Nature Mater, 2008,7 : 406.
  • 10Yu Q,et al. Graphene segregated on Ni surfaces and transferred to insulators [J]. Appl Phys Lett, 2008,93 : 113103.

共引文献67

同被引文献51

  • 1吴红丽,邱介山,郝策,唐祯安.三种缺陷碳纳米管储氢性能分子动力学模拟研究[J].大连理工大学学报,2006,46(3):327-331. 被引量:1
  • 2李霞,赵东林,侯景伟,沈曾民.碳纳米管填充金属Ag纳米线及其机理研究[J].材料工程,2006,34(3):11-13. 被引量:3
  • 3张华,陈小华,张振华,邱明.接枝羟基对有限长碳纳米管电子结构的影响[J].物理化学学报,2006,22(9):1101-1105. 被引量:5
  • 4Novoselov K S,Geim A K,Morozov S V,et al.Electric Field Effect in Atomically Thin Carbon Films[J].Science,2004,306:666-669.
  • 5Son Y W,Cohen M L,Louie S G.Energy Gaps in Graphene Nanoribbons[J].Physical Review Letters,2006,97:216803.
  • 6Han M Y,Ozyilmaz B,Zhang Y,et al.Energy Band-gap Engineering of Graphene Nanoribbons[J].Physical Review Letters,2007,98:206805.
  • 7Cruz-Silva E,Barnett Z M,Sumpter B G,et al.Structural,Magnetic,and Transport Properties of Substitutionally Doped Graphene Nanoribbons from First Principles[J].Physical Review B,2011,83:155445.
  • 8Li H S,Hu H Q,Bao C J,et al.The Stability and Electronic Structure of Fe Atoms Embedded in Zigzag Graphene Nanoribbons[J].Physica B,2014,441:28-32.
  • 9Zhang D,Long M,Zhang X,et al.Designing of Spin-filtering Devices in Zigzag Graphene Nanoribbons Heterojunctions by Asymmetric Hydrogenation and B-N Doping[J].Journal of Applied Physics,2015,117:014311.
  • 10Kan E J,Xiang H J,Yang J L,et al.Electronic Structure of Atomic Ti Chains on Semiconducting Grapheme Nanoribbons:A First-principles Study[J].The Journal of Chemical Physics,2007,127:164706.

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部