期刊文献+

Li在石墨烯、BC_7及C_7N表面吸附与迁移的第一性原理研究 被引量:1

First Principle Study on Surface Adsorption and Diffusion Behavior of Li on Graphene,BC_7,C_7N
下载PDF
导出
摘要 基于密度泛函理论的第一性原理方法,本文系统研究了Li在本征石墨烯及BC7、C7N表面的吸附和迁移行为。与本征石墨烯相比,硼含量为12.5at%时提高了Li的吸附能,而氮含量为12.5at%时减弱了Li的吸附能,这归因于掺杂物种具有不同的电子结构。通过NEB方法计算了Li在本征石墨烯、BC7、C7N表面的迁移。结果表明,相比于本征石墨烯,硼含量为12.5at%的石墨烯减弱了Li的扩散,而氮含量为12.5at%的石墨烯促进了Li的扩散,有助于提高石墨烯负极材料的充放电性能。 The adsorption and diffusion behavior of Li particle on pristine graphene,BC7 and C7N surface have been systematically calculated through the first principle method. Compared with pristine graphene,boron content for 12. 5at% significantly enhances the adsorption energy of Li,whereas the adsorption energy of Li is slightly weakened when nitrogen content for 12. 5at%,which should be attributed to the different electronic structures of the dopant. The diffusion of Li on graphene,BC7,C7 N surface was also computed through nudged elastic band method,and the results reveal that compared to pristine graphene,boron content for 12. 5at% weakens the diffusion of Li,and nitrogen content for 12. 5at% promots the diffusion of Li. It helps to improve the performance of graphene anode materials for charge and discharge.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2015年第3期816-822,共7页 Journal of Synthetic Crystals
基金 国家自然科学基金项目(50845065) 内蒙古自然科学基金项目(2014MS0516)
关键词 锂离子电池 石墨烯 第一性原理 表面吸附 扩散 Lithium-ion battery graphene first principle surface adsorption diffusion
  • 相关文献

参考文献21

  • 1Tarascon J M,Armand M.Issues and Challenges Facing Rechargeable Lithium Batteries[J].Nature,2001,414:359-367.
  • 2Dahn J R,Zheng T,Liu Y,et al.Mechanisms for Lithium Insertion in Carbonaceous Materials[J].Science,1995,270(5236):590-593.
  • 3Wang H B,Zhang C J,Liu Z H,et al.Nitrogen-doped Graphene Nanosheets with Excellent Lithium Storage Properties[J].Journal of Materials Chemistry,2011,21(14):5430-5434.
  • 4Reddy A L M,Srivastava A,Gowda S R,et al.Synthesis of Nitrogen-doped Graphene Films for Lithium Battery Application[J].ACS Nano,2010,4(11):6337-6342.
  • 5Panchakarla L S,Subrahmanyam K S,Saha S K,et al.Synthesis,Structure,and Properties of Boron-and Nitrogen-doped Graphene[J].Advanced Materials,2009,21(46):4726-4730.
  • 6Wang G X,Shen X P,Yao J,et al.Graphene Nanosheets for Enhanced Lithium Storage in Lithium Ion Batteries[J].Carbon,2009,47(8):2049-2053.
  • 7Kouvetakis J,Kaner R B,Sattler M L,et al.A Novel Graphite-like Material of Composition BC3,and Nitrogen-carbon Graphites[J].J.Chem.Soc.Chem.Commun.,1986:1758-1759.
  • 8Li X F,Geng D S,Zhang Y,et al.Superior Cycle Stability of Nitrogen-doped Graphene Nanosheets as Anodes for Lithium Ion Batteries[J].Electrochemistry Communications,2011,13(8):822-825.
  • 9Kazuaki T,Yukinori K,Akihide K,et al.First-principles Approach to Chemical Diffusion of Lithium Atoms in a Graphite Intercalation Compound[J].Physical Review B,2008,78(21):4303.
  • 10Kuzubov A A,Fedorov A S,Eliseeva N S,et al.High-capacity Electrode Material BC3for Lithium Batteries Proposed by Ab Initio Simulations[J].Physical Review B,2012,85(19):195415.

二级参考文献37

  • 1周俊哲,王崇愚.掺硅对封闭碳纳米管尖端几何及电子结构影响的第一原理研究[J].科学通报,2005,50(24):2706-2712. 被引量:9
  • 2Iijima S.Helical Microtubules of Graphitic Carbon[J].Nature,1991,354:56-58.
  • 3Chopra N G,Luyken R J,Cherrey K,et al.Boron Nitride Nanotubes[J].Science,1995,269:966-967.
  • 4Golberg D,Band Y,Kurashima K,et al.Single-walled B-doped Carbon,B/N-doped Carbon and BN Nanotubes Synthesized from Single-walled Carbon Nanotubes through a Substitution Reaction[J].Chemical Physics Letters,1999,308(3):337-342.
  • 5Tang C C,Bando Y,Sato T,et al.A Novel Precursor for Synthesis of Pure Boron Nitride Nanotubes[J].Chemical Communications,2002,12:1290.
  • 6Li F,Xia Y Y,Zhao M W,et al.Theoretical Study of Hydrogen Atom Adsorbed on Carbon-doped BN Nanotubes[J].Physics Letters A,2006,357(4):369-373.
  • 7Terrones M,Romo-Herrera J M,Cruz-Silva E.Pure and Doped Boron Nitride Nanotubes[J].Materials Today,2007,10(5):30-38.
  • 8Guo C S,Fan W J,Chen Z H,et al.First-principles Study of Single-walled Armchair Cx(BN)y Nanotubes[J].Solid State Communications,2006,137(10):549-552.
  • 9Delley B.An all-electron Numerical Method for Solving the Local Density Functional for Polyatomic Molecules[J].Journal of Chemical Physics,1990,92(1):508-517.
  • 10Kim C,Kim B,Lee S M,et al.Electronic Structures of Capped Carbon Nanotubes under Electric Fields[J].Physical Review B,2002,65(16):165418-165423.

共引文献7

同被引文献25

  • 1Novoselov K S, Geim A K, Morozov S V, et al. Electric Field Effect in Atomically Thin Carbon Films[J]. Science,2004,306(5696) : 666-669.
  • 2Rao C N R, Sood A K, Subrahmanyam K S, et al. Graphene:the New Two-dimensional Nanomaterial[J]. Angewandte Chemie International Edition,2009,48(42) :7752-7777.
  • 3Berger C, Song Z, Li X, et al. Electronic Confinement and Coherence in Patterned Epitaxial Graphene [ J ]. Science ,2006,312 (5777) : 1191- 1196.
  • 4Novoselov K S A, Geim A K, Morozov S V, et al. Two-dimensional Gas of Massless Dirac Fermions in Graphene[ J]. Nature,2005,438(7065) : 197-200.
  • 5Nakada K, Ishii A. Migration of Adatom Adsorption on Graphene Using DFT Calculation[ J]. Solid State Communications,2011,151( 1 ) :13-16.
  • 6Chan K T, Neaton J B, Cohen M L. First-principles Study of Metal Adatom Adsorption on Graphene [ J ]. Physical Review B. , 2008,77 (23) : 235430.
  • 7Jin K H, Choi S M, Jhi S H. Crossover in the Adsorption Properties of Alkali Metals on Graphene[ J]. Physical Review B. ,2010,82(3) : 033414.
  • 8Malyi O I, Sopiha K, Kulish V V, et al. A Computational Study of Na Behavior on Graphene[J]. Applied Surface Science,2015,333:235.
  • 9Fan X, Zheng W T, Kuo J L. Adsorption and Diffusion of Li on Pristine and Defective Graphene[J]. ACS Applied Materials & Interfaces,2012, 4(5) :2432.
  • 10Mceann E, Koshino M. The Electronic Properties of Bilayer Graphene[ J]. Reports on Progress in Physics ,2013,76(5 ) :056503.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部