期刊文献+

粗集-遗传支持向量机模型在供应链绩效评价中的应用

Application of Rough Set GA-SVM Model in the Supply Chain Performance Evaluation
下载PDF
导出
摘要 将粗集-遗传支持向量机模型运用到供应链绩效评价中,首先利用粗集理论剔除影响供应链绩效评价的冗余因素,获得核心影响因素,再采用支持向量机对于提取得到的核心影响因素预测供应链绩效所处的级别。在支持向量机分类过程中,利用遗传算法对支持向量机算法的参数进行寻优,获得最佳参数模型,而后预测得到供应链绩效评价级别。最后,实例运用此模型进行了预测,并与只运用粗集-支持向量机进行预测的结果进行对比。结果表明,利用粗集-遗传支持向量机方法对供应链绩效评价级别的预测准确率更高,预测结果更符合实际,是一种科学可行的方法。 Rough set-genetic support vector machine(SVM) model was used for the performance evaluation of supply chain.Firstly, this paper used rough set theory to eliminate the redundant factors influencing the performance evaluation of supply chain, and got the core factors. Support vector machine(SVM) was then used to extract the core level of influing factors to predict the performance of the supply chain. In the process of support vector machine(SVM) classification, the genetic algorithm was used for the parameters optimization of support vector machine(SVM) algorithm. Optimal parameters of the model were obtained and then used to predict the level of supply chain performance evaluation. Finally, instances were forecasted by this model, and compared with the predic results by the only use of rough sets and support vector machine(SVM). The results showed that the use of rough set-genetic support vector machine(SVM) method can predict higher accuracy level of the supply chain performance evaluation, and the predicted results are more realistic, thus being a scientific and feasible method.
作者 武雯娟
出处 《湖北农业科学》 2015年第3期733-738,共6页 Hubei Agricultural Sciences
基金 国家自然科学基金项目(61272506) 国家科技支撑计划课题项目(2007BAB18B01)
关键词 供应链 绩效评价 粗集理论 支持向量机 遗传算法 supply chain performance evaluation rough set theory SVM GA
  • 相关文献

参考文献13

二级参考文献41

  • 1洪军,柯涛.基于Rough集理论的产业竞争力综合测评分析[J].广西大学学报(自然科学版),2004,29(z1):56-59. 被引量:10
  • 2陆有忠,杨有贞,张会林.边坡工程可靠性的支持向量机估计[J].岩石力学与工程学报,2005,24(1):149-153. 被引量:24
  • 3雷鹏,顾冲时.基于粗集推理的大坝安全监测预报模型研究[J].河海大学学报(自然科学版),2005,33(4):391-394. 被引量:4
  • 4刘勇 康力山.非数值并行算法(第二册)——遗传算法[M].北京:科学出版社,1997..
  • 5Vapnik V.Statistical Learning Theory[M].New York:John Wiley, 1998.
  • 6Suykens J A K,Vandewalle J.Least squares support vector machine classifiers[J].Neural Processing Letters, 1999,9( 3 ) : 293-300.
  • 7Suyken J A K,LusasL,Van D P,et al.Least squares support vector machine classifiers:a large scale algorithm[C]//In Proceedings of the European Conference on Circuit Theory and Design (ECCTD 99). ltaly: Stresa, 1999.
  • 8Banerjee M,Chakraborty M K.A category for rough sets[J].Foundations of Computing and Decsion Sciences, 1993,18(3-4): 167-180.
  • 9Crammer K,Singer Y.Uhraconservative online algorithms for muhiclass problems[J].Journal of Machine Learning Research,2003,3:951-991.
  • 10Wu Zhongru,Su Huaizhi. Dam health diagnosis and evaluation [ J ]. Smart Materials & Structures, 2005,14 ( 3 ) : 130-136

共引文献341

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部