期刊文献+

基于块稀疏贝叶斯学习的多任务压缩感知重构算法 被引量:8

A recovery algorithm for multitask compressive sensing based on block sparse Bayesian learning
原文传递
导出
摘要 本文提出一种基于块稀疏贝叶斯学习的多任务压缩感知重构算法,利用块稀疏的单测量矢量模型求解多任务重构问题.通过对信号统的计特性和稀疏块内的结构特性进行联合数学建模,将稀疏重构问题转贝叶斯框架下的特征参数的迭代更新问题.本文算法不需要信号稀疏度和噪声强度的先验信息,是一种高效的盲重构算法.仿真实验表明,本文算法能有效利用信号的统计特性和结构信息,在重构精度和收敛速率方面能够很好地折衷. As a widely applied model for compressive sensing, the multitask compressive sensing can improve the performance of the inversion by appropriately exploiting the interrelationships of the tasks. The existing multitask compressive sensing recovery algorithms only utilize the statistical characteristics of a sparse signal, the structural characteristics of the sparse signal have not been taken into consideration. A multitask compressive sensing recovery algorithm is proposed in this paper based on the block sparse Bayesian learning. The block sparse single measurement vector model is applied to the multi-task problem. Both statistical and block structural characteristics of the sparse signal are used to build a mathematical model, and the sparse inverse problem is linked to the parameter iteration problems in the Bayesian framework. The proposed algorithm does not require the sparseness information and noise beforehand, which turns out to be an effective blind recovery algorithm. Extensive numerical experiments show that the proposed algorithm can exploit both statistical and structural characteristics of the signal, therefore it may reach a good trade-off between the recovery accuracy and the convergence rate.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2015年第7期79-85,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:61201367,61271327,61471191) 南京航空航天大学博士学位论文创新与创优基金(批准号:BCXJ14-08) 江苏省研究生培养创新工程(批准号:KYLX_0277) 中央高校基本科研业务费专项资金 江苏高校优势学科建设工程(PADA)资助的课题~~
关键词 多任务压缩感知 稀疏贝叶斯学习 块稀疏框架 multitask compressive sensing sparse Bayesian learning block sparse framework
  • 相关文献

参考文献21

  • 1Donoho D L,2006.IEEE Trans Inform Theory,52,1289.
  • 2Zhang J D,Zhu D Y Zhang G.2012. IEEE Trans.SP,60,1718.
  • 3Wang L Y,Li L,Yan B,Jiang C S,Wang H Y,Bao S L,2010.Chin.Phys.B,19,088106.
  • 4Zhao S M,Zhuang P.2014. Chin.Phys.B,23,054203.
  • 5Sun Y L,Tao J X.2014. Chin.Phys.B,23,078703.
  • 6张京超, 付宁, 乔立岩, 彭喜元 2014 物理学报 63 030701.
  • 7Ji S,Dunson D,Carin L.2009. IEEE Trans.SP,57,92.
  • 8Qi Y,Liu D,Dunson D.2008. Proceedings of the,25th international conference on Machine learning,Helsinki,Finland,July,5-9.2008.
  • 9Wang Y G,Yang L,Tang L.2013. EURASIP Journal on Advances in Signal Processing.2013.,1.
  • 10Li R P,Zhao Z F,Palicot J,Zhang H G.2014. IET Commun,8,1736.

二级参考文献26

  • 1Zhang Q S, Lv X X, Yu Q T, Liu G Y 2009 Chin. Phys. B 18 2764.
  • 2Huang L M, Ditag Z H, Hong W, Wang C 2012 Acta Phys. Sin. 61 023401.
  • 3Yang S H, Yin G Z, Xing D 2010 Chin. Phys. Lett. 27 094302.
  • 4Zhang C H, Liu J Y 2006 Physics 35 408.
  • 5Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289.
  • 6Candes E J, Romberg J 2006 IEEE Trans.lnform.Theory 52 489.
  • 7Duarte M F, Davenport M A, Takhar D, Laska J N, Sun T, Kelly K E Baraniuk R G 2008 1EEE Sig. Proc. Mag. 25 83.
  • 8Filiipe M, Francisco M A, Miguel V C 2011 Appl. Optics. 50 405.
  • 9Chen T, Li Z W, Wang J L, Wang B, Guo S 2012 Optics and PrecisionEngineering 20 2523.
  • 10Lustig M, Donoho D, Pauly J M 2007 Magn. Reson. Med. 58 1182.

共引文献25

同被引文献40

引证文献8

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部