期刊文献+

Random noise attenuation by f–x spatial projection-based complex empirical mode decomposition predictive filtering 被引量:7

F-X域复数经验模态分解去噪方法(英文)
下载PDF
导出
摘要 The frequency–space(f–x) empirical mode decomposition(EMD) denoising method has two limitations when applied to nonstationary seismic data. First, subtracting the first intrinsic mode function(IMF) results in signal damage and limited denoising. Second, decomposing the real and imaginary parts of complex data may lead to inconsistent decomposition numbers. Thus, we propose a new method named f–x spatial projection-based complex empirical mode decomposition(CEMD) prediction filtering. The proposed approach directly decomposes complex seismic data into a series of complex IMFs(CIMFs) using the spatial projection-based CEMD algorithm and then applies f–x predictive filtering to the stationary CIMFs to improve the signal-to-noise ratio. Synthetic and real data examples were used to demonstrate the performance of the new method in random noise attenuation and seismic signal preservation. F-X域经验模态分解去噪方法在处理非稳态地震数据时存在两个局限,一是单纯剔除第一个固有模态分量将导致有效信号缺失及去噪能力偏弱问题,二是分解复信号时对实部和虚部分别分解存在分解数目不一致的风险。本文对上述两个方面进行了改进,提出了一种新的F-X域投影法复数经验模态分解预测滤波方法,首先采用基于空间投影的复数经验模态分解将F-X域地震数据直接分解为不同的复固有模态分量,然后再对这些分量分别进行F-X域预测滤波。合成记录及实际资料测试表明,本文的新方法能更好地衰减随机噪声,更有效地保持地震信号。
出处 《Applied Geophysics》 SCIE CSCD 2015年第1期47-54,121,共9页 应用地球物理(英文版)
基金 supported financially by the National Natural Science Foundation(No.41174117) the Major National Science and Technology Projects(No.2011ZX05031–001)
关键词 Complex empirical mode decomposition complex intrinsic mode functions f–x predictive filtering random noise attenuation 复数经验模态分解 复固有模态函数 F-X域预测滤波 随机噪声衰减
  • 相关文献

参考文献1

二级参考文献3

共引文献6

同被引文献101

引证文献7

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部